




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年度湖南省郴州市资兴第三中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知m为直线,为不同的平面,下列命题正确的是(A)
(B)
(C)
(D)参考答案:D略2.如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是()A.1 B. C. D.2参考答案:D【考点】LR:球内接多面体.【分析】设AB=a,BB1=h,求出a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,利用导数,得到该正四棱柱体积的最大值,即可得出结论.【解答】解:设AB=a,BB1=h,则OB=a,连接OB1,OB,则OB2+BB12=OB12=3,∴=3,∴a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,∴V′=6﹣6h2,当0<h<1时,V′>0,1<h<时,V′<0,∴h=1时,该四棱柱的体积最大,此时AB=2.故选:D.3.如图所示,是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,任意恒成立”的只有
(
)
A.
B.
C.
D.参考答案:A略4.已知向量,满足=3,=2,=5,则在方向上的投影是A.
B.
C.
D.参考答案:D5.定义在上的函数,满足,,若,且,则有(
)A.
B.
C.
D.不确定参考答案:A略6.设a,b,c都是正实数,且a,b满足,则使a+b≥c恒成立的c的范围是()A.(0,8]
B.(0,10]
C.(0,12] D.(0,16]参考答案:D7.(5分)(2006?广东)若复数z满足方程z2+2=0,则z3=()A.B.C.D.参考答案:D考点:复数代数形式的混合运算.分析:先求复数z,再求z3即可解答:解:由,故选D.点评:复数代数形式的运算,是基础题.8.某几何体的三视图如图所示,则该几何体的体积是(
)A.
B.
C.
D.参考答案:A【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图【试题解析】该几何体是半个圆锥,故
故答案为:A9.定义在R上的函数y=f(x)是减函数,且函数y=f(x﹣1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2﹣2s)≤﹣f(2t﹣t2).则当1≤s≤4时,的取值范围是(
)A. B. C. D.参考答案:C【考点】奇偶性与单调性的综合;函数解析式的求解及常用方法.【专题】计算题;综合题;压轴题.【分析】首先由由f(x﹣1)的图象关于(1,0)中心对称知f(x)的图象关于(0,0)中心对称,根据奇函数定义与减函数性质得出s与t的关系式,然后利用不等式的基本性质即可求得结果.【解答】解析:由f(x﹣1)的图象相当于f(x)的图象向右平移了一个单位又由f(x﹣1)的图象关于(1,0)中心对称知f(x)的图象关于(0,0)中心对称,即函数f(x)为奇函数得f(s2﹣2s)≤f(t2﹣2t),从而t2﹣2t≤s2﹣2s,化简得(t﹣s)(t+s﹣2)≤0,又1≤s≤4,故2﹣s≤t≤s,从而,而,故.故选C.【点评】题综合考查函数的奇偶性、单调性知识;同时考查由最大值、最小值求取值范围的策略,以及运算能力,属中档题.10.已知函数是定义在(-∞,-2)∪(2,+∞)上的奇函数,当时,,则的解集是(
)A.(-∞,-2)∪(3,4) B.(-∞,-3)∪(2,3)C.(3,4) D.(-∞,-2)参考答案:A【分析】画出函数的图象,根据图象列不等式,由此求得的解集.【详解】画出函数图象如下图所示,由图可知,或,解得.【点睛】本小题主要考查函数的奇偶性,考查数形结合的数学思想方法,考查函数不等式的解法,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=|x-2|,若a≠0,且a,b∈R,都有不等式|a+b|+|a-b|≥|a|·f(x)成立,则实数x的取值范围是
.参考答案:[0,4]12.某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图,由图中数据可知a=▲.参考答案:略13.如图,在等腰三角形中,已知分别是边上的点,且其中若的中点分别为且则的最小值是
.参考答案:14.C.(几何证明选讲)如图,是圆O的切线,切点为,.是圆O的直径,与圆交于B,,则
参考答案:15.在等差数列{an}中,,则___________.参考答案:1【分析】根据题意,由等差数列的性质可得答案.【详解】根据题意,等差数列{an}中,=2,则()=1;故答案为116.已知变量x、y满足条件则的最大值是______.
参考答案:617.(13)某几何体的三视图如图所示,则该几何体的体积是
.参考答案:16π-16三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.参考答案:【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用三种方程的转化方法,即可得出结论;(2)利用极坐标方程,结合韦达定理,即可求+.【解答】解:(1)曲线C1的参数方程为(α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为tanθ=;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,设A,B两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2,ρ1ρ2=7,∴+==.19.(本小题满分12分)
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在整个下落过程中它将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入2个小球,记落入袋中的小球个数为,试求的分布列和的数学期望.参考答案:解:(Ⅰ)当且仅当小球一直向左落下或一直向右落下时小球才会落入袋中,故.
………5分(Ⅱ)记“小球落入袋中”为事件,“小球落入袋中”为事件,则事件与事件为对立事件,从而.
………8分显然,的取值为0、1、2,且;;.
的分布列为012p故
………12分(或由随机变量,故)略20.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.(1)求证:△EFG为等腰三角形;(2)求线段MG的长.参考答案:【考点】与圆有关的比例线段.【分析】(1)连接AF,OF,则A,F,G,M共圆,∠FGE=∠BAF,证明∠EFG=∠FGE,即可证明:△EFG为等腰三角形;(2)求出EF=EG=4,连接AD,则∠BAD=∠BFD,即可求线段MG的长.【解答】(1)证明:连接AF,OF,则A,F,G,M共圆,∴∠FGE=∠BAF∵EF⊥OF,∴∠EFG=∠BAF,∴∠EFG=∠FGE∴EF=EG,∴△EFG为等腰三角形;(2)解:由AB=10,CD=8可得OM=3,∴ED=OM=4EF2=ED?EC=48,∴EF=EG=4,连接AD,则∠BAD=∠BFD,∴MG=EM﹣EG=8﹣4.21.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.参考答案:解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C?平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质;平面与平面垂直的判定;直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求cos<,>,即为所求正弦值.解答:解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C?平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科室一级护理质控的意义
- 希沃课件播放指南
- 小长假收心教育主题班会
- 新形势下医院思想文化工作研究
- 套管培训大纲
- 绿色出行倡导者司机雇佣合同范本
- 财务顾问保密协议及企业财务诊断与改善合同
- 白酒品牌授权生产及销售合作协议
- 工业园区厂房拆除及搬迁补偿合同
- 城市公交车辆特许经营权承包合同
- 陕西省安康市教育联盟2023-2024学年高一下学期期末考试数学试卷
- 2023-2024学年景德镇市珠山区数学五年级第二学期期末监测试题含解析
- 小镇文旅康养项目可研报告【健康养老】【旅游康养】
- EHS专项施工EHS管理组织机构
- 发电厂机组优化调度与运行控制策略
- wedo2完整版本.0第一课拉力小车
- 珠宝行业市场竞争与监管研究
- 会员经理培训课件
- 高中政治必修三政治与法治考点专练选择题100题含答案详解
- 中城廉江上阁垌180MW农光互补项目(升压站)环境影响报告表
- 试卷模拟丨北师大版数学三年级下册期末测试卷(二)(含答案)
评论
0/150
提交评论