D104对面积曲面积分34757_第1页
D104对面积曲面积分34757_第2页
D104对面积曲面积分34757_第3页
D104对面积曲面积分34757_第4页
D104对面积曲面积分34757_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

会计学1D104对面积曲面积分34757定义:设为光滑曲面,“乘积和式极限”都存在,的曲面积分其中f(x,y,z)叫做被积据此定义,曲面形构件的质量为曲面面积为f(x,y,z)是定义在上的一个有界函数,记作或第一类曲面积分.若对做任意分割和局部区域任意取点,则称此极限为函数f(x,y,z)在曲面上对面积函数,叫做积分曲面.机动目录上页下页返回结束第1页/共27页则对面积的曲面积分存在.•对积分域的可加性.则有•线性性质.在光滑曲面上连续,对面积的曲面积分与对弧长的曲线积分性质类似.•积分的存在性.若是分片光滑的,例如分成两片光滑曲面机动目录上页下页返回结束第2页/共27页定理:

设有光滑曲面f(x,y,z)在上连续,存在,且有二、对面积的曲面积分的计算法

则曲面积分证明:由定义知机动目录上页下页返回结束第3页/共27页而(光滑)机动目录上页下页返回结束第4页/共27页说明:可有类似的公式.1)如果曲面方程为2)若曲面为参数方程,只要求出在参数意义下dS的表达式,也可将对面积的曲面积分转化为对参数的二重积分.(见本节后面的例4,例5)机动目录上页下页返回结束第5页/共27页例1.

计算曲面积分其中是球面被平面截出的顶部.解:机动目录上页下页返回结束第6页/共27页思考:若是球面被平行平面z=±h

截出的上下两部分,则机动目录上页下页返回结束第7页/共27页例2.

计算其中是由平面坐标面所围成的四面体的表面.解:

设上的部分,则与

原式=分别表示在平面机动目录上页下页返回结束第8页/共27页例3.

设计算解:

锥面与上半球面交线为为上半球面夹于锥面间的部分,它在xoy面上的投影域为则机动目录上页下页返回结束第9页/共27页机动目录上页下页返回结束思考:

若例3中被积函数改为计算结果如何?第10页/共27页例4.

求半径为R

的均匀半球壳的重心.解:

设的方程为利用对称性可知重心的坐标而用球坐标思考题:

例3是否可用球面坐标计算

?例3目录上页下页返回结束第11页/共27页例5.计算解:取球面坐标系,则机动目录上页下页返回结束第12页/共27页例6.计算其中是球面利用对称性可知解:

显然球心为半径为利用重心公式机动目录上页下页返回结束第13页/共27页例7.计算其中是介于平面之间的圆柱面分析:

若将曲面分为前后(或左右)则解:

取曲面面积元素两片,则计算较繁.机动目录上页下页返回结束第14页/共27页例8.

求椭圆柱面位于xoy

面上方及平面

z=y

下方那部分柱面

的侧面积S.解:取机动目录上页下页返回结束第15页/共27页例9.

设有一颗地球同步轨道通讯卫星,距地面高度

h=36000km,机动目录上页下页返回结束运行的角速度与地球自转角速度相同,试计算该通讯卫星的覆盖面积与地球表面积的比.(地球半径R=6400km)解:建立坐标系如图,覆盖曲面的半顶角为

,利用球坐标系,则卫星覆盖面积为第16页/共27页机动目录上页下页返回结束故通讯卫星的覆盖面积与地球表面积的比为由以上结果可知,卫星覆盖了地球以上的面积,故使用三颗相隔角度的通讯卫星就几乎可以覆盖地球全表面.说明:

此题也可用二重积分求A

(见下册P109例2).第17页/共27页内容小结1.定义:2.计算:设则(曲面的其他两种情况类似)

注意利用球面坐标、柱面坐标、对称性、重心公式简化计算的技巧.机动目录上页下页返回结束第18页/共27页思考与练习P158题1;3;4(1);7解答提示:P158题1.P158题3.

设则P184题2机动目录上页下页返回结束第19页/共27页P158题4(1).在

xoy

面上的投影域为这是的面积!机动目录上页下页返回结束第20页/共27页P159题7.

如图所示,有机动目录上页下页返回结束第21页/共27页P184题2.

设一卦限中的部分,则有().(2000考研)机动目录上页下页返回结束第22页/共27页作业

P1584(3);5(2);6(1),(3),(4);8第五节目录上页下页返回结束第23页/共27页备用题1.已知曲面壳求此曲面壳在平面z=1以上部分的的面密度质量M.解:

在xoy

面上的投影为

故机动目录上页下页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论