现代结构分析方法2009-8_第1页
现代结构分析方法2009-8_第2页
现代结构分析方法2009-8_第3页
现代结构分析方法2009-8_第4页
现代结构分析方法2009-8_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

现代结构分析方法

(09-10年度第一学期)第8讲倒易点阵、正点阵与衍射

S0/l=k0S/l=kghkl(hkl)000相机长度Rhklba正交点阵沿c轴投影abcabc入射束d100d1107衍射图标定相;取向

7.1单晶衍射图的产生与标定Whenisqsmall(electrondiffraction),Rd=lL=diffractionconstant,thereflectionspherecutsa2Dreciprocalplane.Indexing:theplanenormal[uvw]andatleastonelowindexspot(hkl)(normallytwospots),withhu+kv+lw=0.S0/l=k0S/l=kghkl(hkl)000相机长度Rhkl[-101](101)(010)Plotthefcc[110]diffractionpattern1)Thezoneaxis[uvw]isperpendiculartoalltheplaneindices(hkl)sothathu+kv+lw=0.2)Distinctionsofanfcclattice:allevenorodd(like111,200,311,220,etc.)3)R1+R2=R3,andR1×R2=[UVW],R1andR2beingthetwoshortvectors4)FixR1(ifaandLlaregiventhenR1isaknownvalue)anddrawR2,cosR1^R2=(h1*h2+k1*k2+l1*l2)/(N1N2);R12/R22=N1/N25)Alltheotherspotsaredeterminedbyn1*R1+n2*R2=Rnh1k1l1h2k2l2h3k3l3R1R2h1k1l1=-111Nhklcpbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220109.5ºh2k2l2=1-11h3k3l3=002indexingusingPDFfilesa)ChoosethreespotssuchasR3=h3k3l3,R1=h1k1l1,R2=h2k2l2.b)di=Ll/Ri,d1=Ll/R1=d2=0.208nm{111},R3=Ll/R3=3/16.6=0.180nm{200}.c)h3k3l3=h1k1l1+h2k2l2:{111}+{111}={200}(111)+(1-1-1)=(200),(111)^(1-1-1)=109.5ºd)[uvw]=R1×R2=R1×R3=R3×R2=[01-1]h1k1l1h2k2l2h3k3l3[uvw]R1R2R1=R2=14.4mm,R1^R2=109.5º.Ll=3.0nm*mm.indexingusingPDFfilesa)ChoosethreespotssuchasR3=h3k3l3,R1=h1k1l1,R2=h2k2l2.b)di=Ll/Ri,d1=Ll/R1=0.180nm{200},R2=R3=Ll/R2=0.109nm{311}.c)h3k3l3=h1k1l1+h2k2l2:{200}+{311}={311}(200)+(-113)=(113),(200)^(-113)=107.5ºd)[uvw]=R1×R2=R1×R3=R3×R2=[0-31]R1R2R3R1=16.7mm,R2=R3=27.5mm,R1^R2=107.5º.Ll=3.0nm*mm.PARAMETERSA=5.8000B=5.8000C=5.8000Å

AF=90.000BT=90.000GM=90.000NUVW=3NSY=1NL=1SY:1-CUBIC;2-TETRA;3-ORTH;4-HEX; 5-MONO;6-TRICLT:1-F;2-I;3-C;4-B;5-A;6-P;7-R;

KUVWH1K1L1H2K2L2R2/R1R3/R1FAId1d2111102-2-2021.0001.000120.002.0512.051

2110-11-1-1111.0001.15570.533.3493.34931000-2000-21.0001.41490.002.9002.90043322-2011-31.1731.54190.002.0511.74952212-2002-41.5811.581108.432.0511.29762111-1-102-21.6331.91590.003.3492.051731000-2-13-11.6581.65872.452.9001.74983110-222-4-21.7321.73273.222.0511.184932202-2-4242.1212.121103.632.051.967103312-2020-62.2362.23677.082.051.9171121000-2-2402.2362.44990.002.9001.297123211-1-1-13-32.5172.58297.613.3491.3311332000-2-4603.6063.74290.002.900.804R2R1109.5º111111002[110]R3220R1=R2=14.4mm,R1^R2=109.5º.Ll=48.226A*mm.PARAMETERSA=5.8000B=5.8000C=5.8000Å

AF=90.000BT=90.000GM=90.000NUVW=3NSY=1NL=1SY:1-CUBIC;2-TETRA;3-ORTH;4-HEX; 5-MONO;6-TRICLT:1-F;2-I;3-C;4-B;5-A;6-P;7-R;

KUVWH1K1L1H2K2L2R2/R1R3/R1FAId1d2111102-2-2021.0001.000120.002.0512.0512110-11-1-1111.0001.15570.533.3493.34931000-2000-21.0001.41490.002.9002.90043322-2011-31.1731.54190.002.0511.74952212-2002-41.5811.581108.432.0511.29762111-1-102-21.6331.91590.003.3492.051731000-2-13-11.6581.65872.452.9001.74983110-222-4-21.7321.73273.222.0511.184932202-2-4242.1212.121103.632.051.967103312-2020-62.2362.23677.082.051.9171121000-2-2402.2362.44990.002.9001.297123211-1-1-13-32.5172.58297.613.3491.3311332000-2-4603.6063.74290.002.900.804R1R2R3R1=R2=16.7mm,R1^R2=90º.Ll=48.226

A*mm.PARAMETERSA=5.8000B=5.8000C=5.8000Å

AF=90.000BT=90.000GM=90.000NUVW=3NSY=1NL=1SY:1-CUBIC;2-TETRA;3-ORTH;4-HEX; 5-MONO;6-TRICLT:1-F;2-I;3-C;4-B;5-A;6-P;7-R;

KUVWH1K1L1H2K2L2R2/R1R3/R1FAId1d2111102-2-2021.0001.000120.002.0512.0512110-11-1-1111.0001.15570.533.3493.34931000-2000-21.0001.41490.002.9002.90043322-2011-31.1731.54190.002.0511.74952212-2002-41.5811.581108.432.0511.29762111-1-102-21.6331.91590.003.3492.051731000-2-13-11.6581.65872.452.9001.74983110-222-4-21.7321.73273.222.0511.184932202-2-4242.1212.121103.632.051.967103312-2020-62.2362.23677.082.051.9171121000-2-2402.2362.44990.002.9001.297123211-1-1-13-32.5172.58297.613.3491.3311332000-2-4603.6063.74290.002.900.804R1=16.7mm,R2=R3=27.5mm,R1^R2=107.5º.Ll=48.226A*mm.R1R2R37.1单晶衍射图的绘制与标定ProceduresSurveytheliteraturetocollectinformationofpossiblephases.ThreepossibleroutestoreachitsfullindexingCalculatedspacingsandcomparewithstandardpowderXRDdata;MeasureR2/R1,R2^R1,andcomparewithtablesinarchives;Tryacubicphase;Usedoubletiltingtodeterminedirectlythe3Dreciprocallattice.Ingeneralthreeindependentpatternsarenecessarytodetermineareciprocalstructure.R1R2109.5ºR3Adiffractionpatternisshownontheright:R1=R2=14.4mm,R1^R2=109.5º.Ll=3.0nm*mm.7.2立方点阵标定R.d=Ll,d=a/(h2+k2+l2)R2N=h2+k2+l2ChoosethreeshortestreciprocalvectorsR1,R2,R3,R3=R1+R2,measuretheangleR1^R2.Calculated1,d2,(R2/R1)2=N2/N1,(R3/R1)2=N3/N1Judgepossiblecombinationsofhkl.Ingeneralthreeindependentpatternsarenecessarytodeterminethereciprocalstructure.h2+k2+l2(hkl)简单立方体心立方面心立方1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220R1R2109.5ºR37.2CubicindexingR.d=Ll,d=a/(h2+k2+l2)R2N=h2+k2+l2ChoosethreeshortestreciprocalvectorsR1,R2,R3,R3=R1+R2,measuretheangleR1^R2.Calculated1,d2,(R2/R1)2,(R3/R1)2.Judgepossiblecombinationsofhkl.Ingeneralthreeindependentpatternsarenecessarytodeterminethereciprocalstructure.R1R2109.5ºR3Adiffractionpatternisshownontheright:R1=R2=14.4mm,R1^R2=109.5º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)20.208 0.208 1 (1.155)2=4/37.2CubicindexingR1R2109.5ºR3R1=R2=14.4mm,R1^R2=109.5º.Ll=3.0nm*mm.h2+k2+l2(hkl)简单立方体心立方面心立方1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220d1 d2 (R2/R1)2(R3/R1)20.208 0.208 1 (1.155)2=4/3=8/6111 111 111/111002/1117.2CubicindexingR1R2109.5º111111002[110]R3R1=R2=14.4mm,R1^R2=109.5º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)20.208 0.208 1 (1.155)2=4/3111 -1-11 -1-11/111002/111cF,a=d111*N111=0.36nm.奥氏体铁Self-consistencyofindices:(111)+(-1-11)=(002)Anglecheck:(111)^(-1-11)=109.5ºLatticeconstantcheck:a=d111*3=0.360nmTwomorepatternsarenecessarytoassurethephaseidentificationExercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=R2=R3=23.6mm,R1^R2=120º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 lattice constant0.127 0.127 1 1110 -101 -101/110011/110 cP,cI 0.18nm220 -202 -202/220022/220 cF 0.36nm[111]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220两种可能Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=R2=R3=23.6mm,R1^R2=120º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 lattice constant0.127 0.127 1 1110 -101 -101/110011/110 cP,cI 0.18nm220 -202 -202/220022/220 cF 0.36nm[111]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220两种可能Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=R2=16.7mm,R1^R2=90º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 latticeconstant0.180 0.180 1 2100 010 010/100110/100 0.180nm(=0.18*N100)1-10 110 110/1-10200/1-10 0.255nm(=0.18*N110)200 020 020/200220/200 0.360nm(=0.18*N200)[001]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220三种可能Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=R2=16.7mm,R1^R2=90º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 latticeconstant0.180 0.180 1 2100 010 010/100110/100 0.180nm(=0.18*N100)1-10 110 110/1-10200/1-10 0.255nm(=0.18*N110)200 020 020/200220/200 0.360nm(=0.18*N200)[001]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

8220220220220三种可能Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstant.R1R2R3R1=16.7mm,R2=R3=27.5mm,R1^R2=107.5º.Ll=3.0nm*mm.d1 d2 (R2/R1)2 (R3/R1)20.180 0.109 11/4 11/4002 -31-1 -31-1/002 -311/002 cF,0.36nm

[130]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

822022022022092213002213001031031021011311311311Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstant.R1R2R3R1=16.7mm,R2=R3=27.5mm,R1^R2=107.5º.Ll=3.0nm*mm.d1 d2 (R2/R1)2 (R3/R1)20.180 0.109 11/4 11/4002 -31-1 -31-1/002 -311/002 cF,0.36nm

[130]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

822022022022092213002213001031031021011311311311Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=16.7mm,R2=23.6mm,R1^R2=90º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 a0.180 0.127 2 3001 -110 -110/001-111/001 cP 0.18nm1-10 002 002/1-101-12/1-10 cI 0.255nm002 -220 -220/002-222/002 ×[110]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

82202202202209221300221300103103102101131131131112222222222222两种可能Exercises:indexthefollowingpatternsincubicschemes.Notethattheremaybemorethanonepossibilitiesforeachpattern.Givethecorrespondinglatticetypesandconstants.R1R2R3R1=16.7mm,R2=23.6mm,R1^R2=90º.Ll=3.0nm*mm.d1 d2 (R2/R1)2(R3/R1)2 a0.180 0.127 2 3001 -110 -110/001-111/001 cP 0.18nm1-10 002 002/1-101-12/1-10 cI 0.255nm002 -220 -220/002-222/002 ×[110]N(hkl)cPbccfcc1100100

21101101103111111

11142002002002005210210

6211211211

82202202202209221300221300103103102101131131131112222222222222两种可能7.3三维倒易点阵的直接确定:双倾doubletilting法000a1a2a3000a1a2a3a1a2a3000100010[001]010001[100]a1=26.56120110[210]120001a2=18.43[110]110001111a3=18.43[010]0000011001017.3三维倒易点阵的直接确定:双倾doubletilting法图3.4六角相Al5FeNi的选区电子衍射花样Figure3.4SAEDpatternsarrangedinastereomannerofthehexagonalAl5FeNiphase.7.4多晶衍射与粉末衍射环Forrandomlyorientatedaggregatesofpolycrystals,thereciprocallatticebecomesaseriesofspheres.TheradiiRi=Ll/di.Thenumberofpointscontributingtoeachsphereisknownasthemultiplicity.7.4多晶衍射与粉末衍射环7.4多晶衍射与粉末衍射环典型非晶电子衍射

XRDPowderpattern图3.5铸态合金Al71Fe5Ni24的X射线(λCuK=0.15406nm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论