版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学合情推理与演绎推理2教学目标
结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用2.1合情推理与演绎推理2.1.1《合情推理-归纳推理》歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”即:偶数=奇质数+奇质数哥德巴赫猜想(GoldbachConjecture)世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。(b)任何一个>=9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。哥德巴赫猜想(GoldbachConjecture)目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘sTheorem)?“任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为“1+2”的形式。哥德巴赫猜想(GoldbachConjecture)在陈景润之前,关於偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了“9+9”。1924年,德国的拉特马赫(Rademacher)证明了“7+7”。1932年,英国的埃斯特曼(Estermann)证明了“6+6”。1937年,意大利的蕾西(Ricei)先後证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”。1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”。1948年,匈牙利的瑞尼(Renyi)证明了“1+c”,其中c是一很大的自然数。1956年,中国的王元证明了“3+4”。1957年,中国的王元先後证明了“3+3”和“2+3”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1+5”,中国的王元证明了“1+4”。1965年,苏联的布赫夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1+3”。1966年,中国的陈景润证明了“1+2”。最终会由谁攻克“1+1”这个难题呢?现在还没法预测。歌德巴赫猜想的提出过程:3+7=10,3+17=20,13+17=30,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”即:偶数=奇质数+奇质数改写为:10=3+7,20=3+17,30=13+17.6=3+3,1000=29+971,8=3+5,1002=139+863,10=5+5,…12=5+7,14=7+7,16=5+11,18=7+11,…,这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称;归纳)归纳推理的几个特点;1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.需证明例1:已知数列{an}的第1项a1=1且(n=1,2,3…),试归纳出这个数列的通项公式.⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想。归纳推理的一般步骤:例2:数一数图中的凸多面体的面数F、顶点数V和棱数E,然后用归纳法推理得出它们之间的关系.多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔464556598多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔464556598668612812610多面体面数(F)顶点数(V)棱数(E)三棱锥四棱锥三棱柱五棱锥立方体正八面体五棱柱截角正方体尖顶塔46455659866861281261077916910151015F+V-E=2猜想欧拉公式例:如图有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测;把n个金属片从1号针移到3号针,最少需要移动多少次?解;设an表示移动n块金属片时的移动次数.当n=1时,a1=1当n=2时,a2=3123当n=1时,a1=1当n=2时,a2=3解;设an表示移动n块金属片时的移动次数.当n=3时,a3=7当n=4时,a4=15猜想an=2n-1123作业:P931.3.42.1合情推理与演绎推理2.1.1《合情推理-类比推理》1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明了锯2.仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.3.科学家对火星进行研究,发现火星与地球有许多类似的特征;1)火星也绕太阳运行、饶轴自转的行星;2)有大气层,在一年中也有季节变更;3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.科学家猜想;火星上也可能有生命存在.4)利用平面向量的本定理类比得到空间向量的基本定理.在两类不同事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式,
称为类比推理.(简称;类比)类比推理的几个特点;1.类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.3.类比的结果是猜测性的不一定可靠,单它却有发现的功能.例1:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.ABCabcoABCs1s2s3c2=a2+b2S2△ABC=S2△AOB+S2△AOC+S2△BOC猜想:例3:(2005年全国)计算机中常用的十六进位制是逢16进1的计算制,采用数字0-9和字母A-F共16个计数符号,这些符号与十进制的数的对应关系如下表;十六进位01234567十进位01234567例如用16进位制表示E+D=1B,则A×B=()十六进位89ABCDEF十进位89101112131415AA.6EB.72C.5FD.0B例4:(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为---------------------------------------------------------------------------------------------------------------------------------------------------------.(x-a)2+(y-b)2=r2与②(x-c)2+(y-d)2=r2(a≠c或设圆的方程为①b≠d),则由①式减去②式可得上述两圆的对称轴方程.作业:P93-94A组5.B组1.圆的概念和性质球的概念和性质与圆心距离相等的两弦相等与圆心距离不相等的两弦不相等,距圆心较近的弦较长以点(x0,y0)为圆心,r为半径的圆的方程为(x-x0)2+(y-y0)2=r2圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房地产典当与房地产代理销售合同3篇
- 政府招标知识培训课件
- 期末班主任工作总结
- 社区商业知识培训课件
- 加工运动鞋15万双服装10万件项目可行性研究报告写作模板-拿地申报
- 嘉兴市平湖市2024学年第一学期小学语文四年级期末检测卷 (2025.1)参考答案及评分建议(定稿)
- 土壤保水知识培训课件
- 2024-2025学年陕西省延安市延长县八年级(上)期末英语试卷(含答案)
- 河南省信阳市(2024年-2025年小学六年级语文)统编版能力评测((上下)学期)试卷及答案
- 2025商业地产蛇年新春年货节(年货更有味阖家团圆年主题)活动策划方案-51正式版
- 智能终端安全检测
- 新能源发电技术 电子课件 1.4 新能源发电技术
- DB34-T 4859-2024 农村河道清淤规范
- 中学物业管理服务采购投标方案(技术方案)
- 福建中闽能源股份有限公司招聘笔试题库2024
- 康复科年度工作亮点与展望计划
- 冀教版二年级(上)数学加减乘除口算题卡
- 【期中考后反思】《反躬自省,砥砺奋进》-2022-2023学年初中主题班会课件
- 材料采购服务方案(技术方案)
- 2024反诈知识竞赛考试题库及答案(三份)
- 中国传统文化知识竞赛考试题库300题(含答案)
评论
0/150
提交评论