19概率统计解答题4_第1页
19概率统计解答题4_第2页
19概率统计解答题4_第3页
19概率统计解答题4_第4页
19概率统计解答题4_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题十九概率统计解答题强化训练41.2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事。多家央企为了配合国家战略支持雄安新区建设,纷纷申请在新区建立分公司.若规定每家央企只能在雄县、容城、安新3个片区中的一个片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不影响且必须在其中一个片区建立分公司.向雄安新区申请建立分公司的任意4家央企中,(1)求恰有2家央企申请在“雄县”片区建立分公司的概率;(2)用X表示这4家央企中在“雄县”片区建立分公司的个数,用Y表示在“容城”或“安新”片区建立分公司的个数,记ξ=|X-Y|,求ξ的分布列.2.甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元(1)设甲乙快递公司的“快递小哥”一日工资(单位:元)与送货单数的函数关系式为,求;(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其天的送货单数,得到如下条形图:若将频率视为概率,回答下列问题:①记乙快递公司的“快递小哥”日工资为(单位:元),求的分布列和数学期望;②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.3.已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.(1)求依据方案乙所需化验恰好为2次的概率.(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?4.为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩(2)研究发现,本次检测的理科数学成绩近似服从正态分布;(精确到个位)(,约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.(ⅰ)估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)(ⅱ)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据:,)5.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:温度x/°C产卵数y/个21623112420272729573277经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中xi,yi分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i)试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).(回归教材选修2-3)注:,.6.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)(0,210](210,400]某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124132200215225300410若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应交电费多少元?现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.7.2017年8月8日晚我国四川九寨沟县发生了7.0级地震.为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:(1)求的值;(2)①用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的分布列及数学期望;②设函数(其中表示的方差)是评估安全教育方案成效的一种模拟函数.当时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在①的条件下,判断该校是否应调整安全教育方案?等级得分频数不合格合格624补偿练习42(2013·课标全国Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论