




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆(2)Ol(1)直线和圆有两个公共点时,叫做直线和圆相交;这时直线叫做圆的割线.Ol(2)直线和圆有唯一公共点时,叫做直线和圆相切;这时直线叫做圆的切线.
唯一的公共点叫做切点.Ol(3)直线和圆没有公共点时,叫做直线和圆相离.直线和圆的位置关系1、直线与圆相离、相切、相交的定义。
直线和圆的位置关系是用直线和圆的公共点的个数来定义的,即直线与圆没有公共点、只有一个公共点、有两个公共点时分别叫做直线和圆相离、相切、相交。相离相交相切切点切线割线交点交点快速判断下列各图中直线与圆的位置关系.Ol.O1.Ol.O2lL.2、连结直线外一点与直线所有点的线段中,最短的是______?
1.直线外一点到这条直线垂线段的长度叫点到直线的距离。垂线段a
.AD(2)直线l和⊙O相切2、用圆心到直线的距离和圆半径的数量关系,来揭示圆和直线的位置关系。
(1)直线l和⊙O相离(3)直线l和⊙O相交d>rd=rd<rdorldorlodrl总结:判定直线与圆的位置关系的方法有____种:(1)根据定义,由________________
的个数来判断;(2)根据性质,由_________________
的关系来判断。在实际应用中,常采用第二种方法判定。两直线与圆的公共点圆心到直线的距离d与半径rOlOlOlrd┐┐d┐d直线与圆的位置关系判定方法:无切线割线直线名称无切点交点公共点名称d>rd=r
d<r圆心到直线距离
d与半径r关系012公共点个数相离相切相交直线和圆的位置关系1、已知圆的直径为13cm,设直线和圆心的距离为d:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.
2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.
1)若d=4.5cm,则直线与圆
,直线与圆有____个公共点.3)若AB和⊙O相交,则
.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则
;2)若AB和⊙O相切,则
;相交相切相离d>5cmd=5cmd<5cm三、练习与例题0cm≤2103.直线和圆有2个交点,则直线和圆_________;
直线和圆有1个交点,则直线和圆_________;
直线和圆有没有交点,则直线和圆_________;相交相切相离
1.根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线.·AO例在Rt△ABC
中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.ACBD解:过C作CD⊥AB于D,在Rt△ABC中,根据三角形面积公式有CD·AB=AC·BC即圆心C到AB的距离d=2.4cm.(1)当r=2cm时,有d>r,因此⊙C和AB相离.(2)当r=2.4cm时,有d=r,因此⊙C和AB相切.(3)当r=3cm时,有d<r,因此⊙C和AB相交.
练习(B组)
1、如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是
cm。
2、如图,已知∠AOB=30°,M为OB上一点,且OM=5cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?
①r=2cm;②r=4cm;③r=2.5cm。
3、直线L和⊙O有公共点,则直线L与⊙O().A、相离;B、相切;C、相交;D、相切或相交。12/5相离相交相切D在⊙O中,经过半径OA的外端点A作直线L⊥OA,则圆心O到直线L的距离是多少?______,直线L和⊙O有什么位置关系?_________.思考:.OAOA相切L经过半径的外端并且垂直于这条半径的直线是圆的切线.几何应用:
∵OA⊥L∴L是⊙O的切线ABlO圆O与直线l相切,则过点A的直径AB与切线l有怎样的位置关系?垂直
下雨天当你快速转动雨伞时飞出的水,在砂轮上打磨工件飞出的火星,都是沿着圆的切线的方向飞出的.问题:1当你在下雨天快速转动雨伞时水飞出的方向是什么方向?2砂轮打磨工件飞出火星的方向是什么方向?例1
直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
求证:直线AB是⊙O的切线.证明:连接OC∵OA=OB,CA=CB∴△OAB是等腰三角形,OC
是底边AB上的中线∴OC⊥AB∴AB是⊙O的切线.OAL思考将上页思考中的问题反过来,如果L是⊙O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?一定垂直切线的性质定理:圆的切线垂直于过切点的半径拓展应用:1.在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.试说明:AC是⊙D的切线.F2.AB是⊙O的弦,C是⊙O外一点,BC是⊙O的切线,AB交过C点的直径于点D,OA⊥CD,试判断△BCD的形状,并说明你的理由.3.AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E
作⊙O的切线交AC的延长线于点D,试判断△AED的形状,并说明理由.ABDOCE
练一练1、如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D。BD是⊙O的切线吗?为什么?解:BD是⊙O的切线。连结OD。又∵∠B+∠BOD+∠BDO
=180°∵OA=OD
,
∠BAD=30°(已知)∴直线BD⊥OD又∵直线BD经过⊙O上的D点∴直线BD是⊙O的切线∴∠ODA=∠A=30°(等边对等角)∴∠BOD=∠A+∠ODA=60°O●ABCD∴∠BDO=180°-∠B-∠BOD=90°ABCEDO练习3:如右图所示,已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E。那么,OB是⊙D的切线吗?请说明理由。练一练ECD●解:OB是⊙D的切线。理由如下:又∵OC平分∠AOB,DF⊥OB∴DF=DE∴OB是⊙D的切线。∴OE⊥OA∵OA与⊙D相切于点E连结DE,过D点作DF⊥OB,垂足为F。ABOF┐即d=r练习4:如图,台风中心P(100,200)沿北偏东30O方向移动,受台风影响区域的半径为200km,那么下列城市A(200,380),B(600,480),C(550,300),D(370,540)中,哪些城市要做抗台风准备?如图,台风中心P(100,200)沿北偏东30O方向移动,受台风影响区域的半径为200km,那么下列城市A(200,380),B(600,480),C(550,300),D(370,540)中,哪些城市要做抗台风准备?PABCD5:如图,直角梯形ABCD,AD∥BC,∠ADC=135°,DC=8以D为圆心,以8个单位长为半径作⊙D,试判定⊙D与BC有向几个交点?
分析:⊙D与BC交点的个数,决定于点D到BC的距离,作DE⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性腹膜炎病人的护理
- 2025年锥虫焦虫病防治药合作协议书
- 尿路感染的治疗与护理
- 护理学新生儿黄疸
- 2025年电网系统电力电缆项目合作计划书
- 2025年中小学生安全教育日活动方案
- 陕西航空职业技术学院《生涯辅导》2023-2024学年第二学期期末试卷
- 陕西铁路工程职业技术学院《安全工程专业英语》2023-2024学年第二学期期末试卷
- 随州市广水市2025届五年级数学第二学期期末调研模拟试题含答案
- 2025年交联电力电缆项目合作计划书
- 妞康特牛奶蛋白过敏诊治-课件
- 施工机具专项施工方案
- 苏教版三年级科学(下)第一单元综合测试卷植物的一生(一)含答案
- API-650-1钢制焊接石油储罐
- 少儿美术绘画教学课件 艺库美术 10岁-12岁 《创意素描-洗刷刷》
- 档案移交清单
- 2022年“华罗庚杯”全国初中数学预赛-竞赛试题及答案
- 减速机生产工艺流程图
- 金融科技课件(完整版)
- 网络直播行业税收检查指引
- 初中三年主题班会整体规划
评论
0/150
提交评论