版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
多边形与平行四边形1第25讲┃多边形与平行四边形考点1多边形考点聚焦多边形的定义在同一平面内,不在同一直线上的一些线段_________相接组成的图形叫做多边形多边形的性质内角和n边形内角和为________外角和任意多边形的外角和为360°多边形对角线n边形共有________条对角线不稳定性
n边形具有不稳定性(n>3)拓展n边形的内角中最多有________个是锐角首尾顺次
(n-2)·180°
3
2第25讲┃多边形与平行四边形正多边形定义各个角________,各条边________的多边形叫正多边形对称性正多边形都是________对称图形,边数为偶数的正多边形是中心对称图形相等
相等
轴
3第25讲┃多边形与平行四边形考点2平面图形的镶嵌1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫多边形覆盖平面或平面镶嵌问题.2.平面镶嵌的条件:在同一顶点的几个角的和等于360°.3.常见形式(1)可以铺满地板的同一种正多边形有:正三角形,正方形,正六边形.(2)也可用多种正多边形铺地板.4第25讲┃多边形与平行四边形考点3平行四边形的概念与性质定义两组对边分别平行的四边形是平行四边形性质(1)平行四边形的两组对边分别________;(2)平行四边形的两组对边分别________;(3)平行四边形的两组对角分别________;(4)平行四边形的对角线互相________;(5)平行四边形是中心对称图形,它的对称中心是两条对角线的交点总结若一条直线过平行四边形的对角线的交点,那么这条直线被一组对边截下的线段以对角线的交点为对称中心,且这条直线等分平行四边形的面积平行
相等
相等
平分
5第25讲┃多边形与平行四边形考点4平行四边形的判定序号方法1定义法2两组对角分别________的四边形是平行四边形3两组对边分别________的四边形是平行四边形4一组对边平行且________的四边形是平行四边形5对角线________的四边形是平行四边形相等
相等
相等
互相平分
6第25讲┃多边形与平行四边形考点5平行四边形的面积1.公式:平行四边形的面积=底×高.2.拓展:同底(等底)等高(同高)的平行四边形面积相等.3.两条平行线的距离:在两条平行线中一条直线上任意一点到另一条直线上的距离叫做两条平行线的距离.4.性质:夹在两条平行线间的平行线段相等.
7第25讲┃多边形与平行四边形探究一多边形的内角和与外角和命题角度:1.n边形的内角和定理的应用;2.n边形的外角和定理的应用.6归类探究例1[2013·娄底]一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.8第25讲┃多边形与平行四边形解析
设该多边形的边数为n,则(n-2)×180=2×360,解得n=6.9第25讲┃多边形与平行四边形
如果已知n边形的内角和,那么可以求出它的边数n;对于多边形的外角和等于360°,应明确两点:(1)多边形的外角和与边数n无关;(2)多边形内角问题转化为外角问题常常有化难为易的效果.10第25讲┃多边形与平行四边形探究二平行四边形的性质命题角度:1.平行四边形对边的特点;2.平行四边形对角的特点;3.平行四边形对角线的特点.例2[2013·徐州]如图25-1,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)图25-111第25讲┃多边形与平行四边形解
12第25讲┃多边形与平行四边形解
13第25讲┃多边形与平行四边形
平行四边形的性质的应用,主要是利用平行四边形的边与边(对边平行且相等),角与角(对角相等)及对角线(互相平分)之间的特殊关系进行证明或计算.14第25讲┃多边形与平行四边形探究三平行四边形的判定例3[2013·无锡]如图25-2所示,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”作为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)命题角度:1.从对边判定四边形是平行四边形;2.从对角判定四边形是平行四边形;3.从对角线判定四边形是平行四边形.图25-215第25讲┃多边形与平行四边形解
16第25讲┃多边形与平行四边形
判别一个四边形是不是平行四边形,要根据具体条件灵活选择判别方法.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.17第25讲┃多边形与平行四边形平行四边形的判别回归教材已知:如图25-3(1),在四边形ABCD中,AB=CD,CB=AD.求证:四边形ABCD是平行四边形.图25-318第25讲┃多边形与平行四边形证明:连接AC(如图25-3(2)).∵AB=CD,CB=AD,AC=CA,∴△ABC≌△CDA.∴∠1=∠2,∠3=∠4.∴AB∥CD,CB∥AD.∴四边形ABCD是平行四边形.19第25讲┃多边形与平行四边形中考预测1.已知:如图25-4,在△ABC中,AB=AC,E是AB的中点,D在BC上,延长ED到F,使ED=DF=EB.连接FC.求证:四边形AEFC是平行四边形.图25-420第25讲┃多边形与平行四边形证明
∵AB=AC,∴∠B=∠ACB.∵ED=EB,∴∠B=∠EDB.∴∠ACB=∠EDB.∴EF∥AC.又∵E是AB的中点,∴BD=CD.21第25讲┃多边形与平行四边形
∵∠EDB=∠FDC,ED=DF,∴△EDB≌△FDC.∴∠DEB=∠F.∴AB∥CF.∴四边形AEFC是平行四边形.22第25讲┃多边形与平行四边形2.已知:如图25-5,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.求证:四边形ABCD是平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流练习含答案
- 广东省阳东广雅学校高二信息技术 三维动画制作教案
- 2024年学年七年级语文下册 第二单元 告别抒怀 第4课《告别昨天的我》教案2 新疆教育版
- 2024-2025学年高中化学 第3章 第2节 课时3 铁的重要化合物教案 新人教版必修1
- 2024年届九年级历史上册 第5课 为争取“民主”“共和”而战教案2 北师大版
- 2023六年级数学上册 二 比和比例 测量旗杆高度教案 冀教版
- 2023六年级数学下册 三 解决问题的策略第三课时 解决问题的策略(练习课)教案 苏教版
- 文书模板-中医师承关系合同书
- 高考地理一轮复习第十二章环境与发展第一节环境问题与可持续发展课件
- 生活水泵房管理制度
- 职业技术学校老年保健与管理专业(三年制)人才培养方案
- 中建项目科技创效案例手册(2022版)
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
- 有子女民政局常用协议离婚书格式2024年
- 中国介入医学白皮书(2021 版)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 人教新目标八年级上册英语《Unit 7 Will people have robots?》Section A-说课稿1
- 代运营合作服务协议
- 婚内财产协议书(2024版)
- 有限空间作业应急管理制度
- 2024全国普法知识考试题库及答案
评论
0/150
提交评论