




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于直线的两点式方程第一页,共二十七页,2022年,8月28日
y=kx+b
y-
y0=k(x-
x0
)k为斜率,P0(x0,y0)为直线上的一定点k为斜率,b为截距1).直线的点斜式方程:2).直线的斜截式方程:第二页,共二十七页,2022年,8月28日
解:设直线方程为:y=kx+b例1.已知直线经过P1(1,3)和P2(2,4)两点,求直线的方程.一般做法:由已知得:解方程组得:所以:直线方程为:y=x+2方程思想第三页,共二十七页,2022年,8月28日还有其他做法吗?
为什么可以这样做,这样做的根据是什么?第四页,共二十七页,2022年,8月28日即:得:y=x+2
设P(x,y)为直线上不同于P1,
P2的动点,与P1(1,3)P2(2,4)在同一直线上,根据斜率相等可得:
二、直线的两点式方程第五页,共二十七页,2022年,8月28日
已知两点P1(x1,
y1),P2(x2,
y2),求通过这两点的直线方程.解:设点P(x,y)是直线上不同于P1,
P2的点.可得直线的两点式方程:∴∵
kPP1=kP1P2记忆特点:1.左边全为y,右边全为x2.两边的分母全为常数
3.分子,分母中的减数相同
推广第六页,共二十七页,2022年,8月28日不是!
是不是已知任一直线中的两点就能用两点式写出直线方程呢?
两点式不能表示平行于坐标轴或与坐标轴重合的直线.注意:
当x1=x2或y1=
y2时,直线P1P2没有两点式程.(因为x1=x2或y1=
y2时,两点式的分母为零,没有意义)
那么两点式不能用来表示哪些直线的方程呢??第七页,共二十七页,2022年,8月28日
若点P1(x1,
y1),P2(
x2,
y2)中有x1=x2,或y1=
y2,此时过这两点的直线方程是什么?当x1=x2
时方程为:x
=x1当y1=
y2时方程为:y=
y1第八页,共二十七页,2022年,8月28日
例2:已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l
的方程.解:将两点A(a,0),B(0,b)的坐标代入两点式,得:即所以直线l的方程为:四、直线的截距式方程第九页,共二十七页,2022年,8月28日②截距可是正数,负数和零
注意:①不能表示过原点或与坐标轴平行或重合的直线
直线与x轴的交点(a,o)的横坐标a叫做直线在x轴上的截距是不是任意一条直线都有其截距式方程呢?截距式直线方程:
直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距第十页,共二十七页,2022年,8月28日⑴过(1,2)并且在两个坐标轴上的截距相等的直线有几条?解:⑴
两条例3:那还有一条呢?y=2x(与x轴和y轴的截距都为0)所以直线方程为:x+y-3=0a=3把(1,2)代入得:设:直线的方程为:
举例第十一页,共二十七页,2022年,8月28日解:三条
(2)过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?
解得:a=b=3或a=-b=-1直线方程为:y+x-3=0、y-x-1=0或y=2x设截距可是正数,负数和零第十二页,共二十七页,2022年,8月28日
例4:已知角形的三个顶点是A(-5,0),
B(3,-3),C(0,2),求BC边所在的直线
方程,以及该边上中线的直线方程.解:过B(3,-3),C(0,2)两点式方程为:整理得:5x+3y-6=0这就是BC边所在直线的方程.
举例第十三页,共二十七页,2022年,8月28日
BC边上的中线是顶点A与BC边中点M所连线段,由中点坐标公式可得点M的坐标为:即整理得:x+13y+5=0这就是BC边上中线所在的直线的方程.
过A(-5,0),M的直线方程M第十四页,共二十七页,2022年,8月28日中点坐标公式:则
若P1,P2坐标分别为(x1,y1),(x2,y2)且中点M的坐标为(x,y).∵B(3,-3),C(0,2)∴M即M第十五页,共二十七页,2022年,8月28日
已知直线l:2x+y+3=0,求关于点A(1,2)对称的直线l
1的方程.
解:当x=0时,y=3.点(0,-3)在直线l上,关于(1,2)的对称点为(2,7).
当x=-2时,y=1.
点(-2,1)在直线l上,关于(1,2)的对称点为(4,3).
那么,点(2,7),(4,3)在l
1上.因此,直线l
1的方程为:化简得:2x+y-11=0
思考题第十六页,共二十七页,2022年,8月28日还有其它的方法吗?∵
l∥l
1,所以l
与l
1的斜率相同∴
kl1=-2经计算,l
1过点(4,3)所以直线的点斜式方程为:y-3=-2(x-4)化简得:2x+y-11=0第十七页,共二十七页,2022年,8月28日名称
几何条件
方程
局限性
归纳直线方程的四种具体形式第十八页,共二十七页,2022年,8月28日(1)平面直角坐标系中的每一条直线都可以用一个关于x,y的二元一次方程表示吗?(2)每一个关于x,y的二元一次方程都表示直线吗?
思考第十九页,共二十七页,2022年,8月28日分析:直线方程二元一次方程(2)当斜率不存在时L可表示为x-x0=0,亦可看作y的系数为0的二元一次方程.(x-x0+0y=0)结论1:平面上任意一条直线都可以用一个关于x,y
的二元一次方程表示.(1)当斜率存在时L可表示为y=kx+b
或y-y0=k(x-x0)
显然为二元一次方程.第二十页,共二十七页,2022年,8月28日即:对于任意一个二元一次方程Ax+By+C=0(A.B不同时为0),判断它是否表示一条直线?(1)当B0时,方程可变形为它表示过点,斜率为的直线.
(2)当B=0时,因为A,B不同时为零,所以A一定不为零,于是方程可化为,它表示一条与y
轴平行或重合的直线.结论2:关于x,y
的二元一次方程,它都表示一条直线.直线方程二元一次方程第二十一页,共二十七页,2022年,8月28日由1,2可知:直线方程二元一次方程定义:我们把关于x,y
的二元一次方程
Ax+By+C=0(其中A,B不同时为0)
叫做直线的一般式方程,简称一般式.
定义第二十二页,共二十七页,2022年,8月28日
在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线(1)平行于x轴:(2)平行于y轴:(3)与x轴重合:(4)与y轴重合:分析:(1)直线平行于x轴时,直线的斜率不存在,在x轴上的截距不为0.即A=0,B0,C0.(2)B=0,A0,C0.(3)A=0,C=0,B0.(4)B=0,C=0,A0.
探究第二十三页,共二十七页,2022年,8月28日例1
已知直线过点A(6,4),斜率为,求直线的点斜式和一般式方程.解:代入点斜式方程有y+4=(x-6).
化成一般式,得
4x+3y-12=0.
举例第二十四页,共二十七页,2022年,8月28日例2
把直线L的一般式方程x-2y+6=0化成斜截式,求出L的斜率以及它在x轴与y轴上的截距,并画出图形.解:化成斜截式方程
y=x+3
因此,斜率为k=,它在y轴上的截距是3.
令y=0得x=-6.即L在x轴上的截距是-6.
由以上可知L与x
轴,y轴的交点分别为A(-6,0)B(0,3),过A,B做直线,为L的图形.
举例第二十五页,共二十七页,2022年,8月28日m,n为何值时,直线mx+8y+n=0和2x+my-1=0垂直?解:(1)若两条直线的斜率都存在,则m不等于0,且两条直线的斜率分别为但由于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级数学20以内三个数加减混合运算竞赛考核训练题带答案
- 三位数除以两位数水平作业练习题大全附答案
- 2025年中国腹肌训练器行业市场发展前景及发展趋势与投资战略研究报告
- 2025-2030年中国浮艇泵行业深度研究分析报告
- 2025年中国地面数字电视行业发展前景及投资战略咨询报告
- 中国组合防潮软垫行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 吡硫翁钠行业深度研究分析报告(2024-2030版)
- 2025年中国红香蕉行业市场深度研究及投资战略规划报告
- 2025年中国材料厚度测量仪器行业市场全景监测及投资战略咨询报告
- 2025年中国原子吸收光谱仪行业市场调查研究及投资前景展望报告
- 网络游戏代理合同通用版范文(2篇)
- SH/T 1485.4-1995工业用二乙烯苯中特丁基邻苯二酚含量的测定分光光度法
- GB/T 38807-2020超级奥氏体不锈钢通用技术条件
- GB/T 27773-2011病媒生物密度控制水平蜚蠊
- 质量风险识别项清单及防控措施
- 2022年石家庄交通投资发展集团有限责任公司招聘笔试试题及答案解析
- 中国华电集团公司信访事项处理程序
- 特种设备制造内审及管理评审资料汇编经典版
- EDI超纯水系统操作说明书
- 金属监督监理实施细则
- 2022年镇海中学提前招生模拟卷科学试卷
评论
0/150
提交评论