品职教育2017年cfa二级portfolio management知识框架图-何旋版_第1页
品职教育2017年cfa二级portfolio management知识框架图-何旋版_第2页
品职教育2017年cfa二级portfolio management知识框架图-何旋版_第3页
品职教育2017年cfa二级portfolio management知识框架图-何旋版_第4页
品职教育2017年cfa二级portfolio management知识框架图-何旋版_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PortfolioPortfolioCFA二级培训项ReadingArbitrageArbitragepricingtheory(APT)公E(RP)RFP,1(1)P,2(2)...P,k(k (均衡模型 计λ:factorriskpremium(orfactorβp:factorAfactormodeldescribesassetTherearemanyassets,soinvestorscanformwell-diversifiedportfoliosthateliminatespecific特不同的asset,λ1一样,βp,1不一只有well-diversifiedportfolios满足这个公式,no-arbitrageCarhartfour-factormodelanextensionofFamaand 理E(RE(Rp)=RF+βp,1RMRF+βp,2SMB+βp,3HML+βp,4WML;WML=winnersminuslosers,amomentumCAPM:therearesize,value,andmomentumCarhartmodel:size,value,andmomentumrepresentsystematicriskMacroeconomicFactor计算、性Rab b (回归模型 i1 i2 Ri=returnforassetai=E(Ri)=expectedreturnforassetFGDP=surpriseintheGDPSurprise=actualvalue–expectedbi1=GDPsurprisesensitivityofassetεi=firm-specific不同的asset:F一样,b不一Riaibi1FP/Ebi2FSIZEai:Noeconomicinterpretation Standardizedbeta:b(P/E)1- P/F:factorCross-sectional不同的assetF一样,b不一Statisticalfactormodels

结论、性FactorFactorModelsinReturnNN

Activereturn=Rp–Portfoliosensitivity arksensitivityFactorreturn

kk

k Factortilts:over-orunderweightsrelativetotheben arkfactor

Securityselection:reflectsthemanager’sskillinindividualassetselectionFactorFactorModelsinRisktheactivenon-factororriskassumedbytheActivespecificrisk(securitytheactivenon-factororriskassumedbytheActivespecificrisk(securityselectionActivefactorInformationRatioRP s(RR

resultingfromtheportfolio’s exposuresrelativetofactorsspecifiedintheriskmodel.TheTheinvestorwhodependsefromsalaryorself-employmentissensitivebusinesscycleriskandhemightbeverysensitivetoinvestinprocyclicalAninvestorwithindependentwealthandnojob-lossconcernswouldhavecomparativeadvantageinbearingbusinesscycleFactorModelsinPortfolioFactorsensitivityequalto1toonlyoneriskfactorandsensitivitiesof0totheremaining应用:hedgethatriskoffsetitorspeculateonTrackingPortfoliowithfactorsensitivitiesthatmatchbenark-FactorFactorModelsinPortfolioAcceptaboveaverageexposurestorisksthattheyhaveacomparativeadvantageinIndividualtradedequitiesortheliquidityReadingMEASURINGANDMANAGINGMARKETValueValueatRisk:FormalValueatrisk(VaR)istheminimumlossineithercurrencyunitsorasapercentageofportfoliovaluethatwouldbeexpectedtobeincurredacertainpercentageofthetimeoveracertainperiodoftimegivenassumedmarketconditions.X 结论、Theriskfactorsaredistributednormally,whichallowsTheriskfactorsaredistributednormally,whichallowsustoestimatetheriskofthebasedonlyonthemeans,variances,andcovariances(orVaR(X%)decimalbasisE(R)J计assetThemajoradvantageoftheparametricmethodisitssimplicityandThecalculatedVaRisalsoverysensitivetothecovarianceTheparametricmethodapplyundertheassumptionofnormallydistributedreturns.Whentheportfoliocontainsoptions,theparametricmethodhaslimitedusefulness. EstimatingVaRisbasedEstimatingVaRisbasedontheactualperiodicchangesinriskfactorsoveralookbackperiod.Byorderingthechangesinportfoliovaluefrommostpositivetomostnegative,wecanfindthelargest5%oflosses.Thesmallestofthoselossesisourestimateofthe5%VaRTheHistoricalUnderthehistoricalsimulationmethod,noadjustmentsaremadefordifferenttimeThehistoricalsimulationVaRsaremuchBoththeparametricandhistoricalsimulationmethodshavethelimitationthatAdvantageofthehistoricalsimulationDonotneedtheassumptionofCanbeusedtoestimatetheVaRforportfoliosthatincludebasedonwhatactuallyWeaknessofthehistoricalsimulationTherecanbenocertaintythatahistoricaleventwillre-Thehistoricalsimulationmethodisbestusedwhenthedistributionofreturnsduringlookbackperiodareexpectedtoberepresentativeofthe MonteCarlosimulationisMonteCarlosimulationisbasedonanassumedprobabilitydistributionforeachriskComputersoftwareisusedtogeneraterandomvalues.Themorevaluesweuse,thereliableouranswersare,butthemoretime-TheflexibilityoftheMonteCarlomethodtohandlemorecomplexdistributions.TheMonteCarloandhistoricalsimulationmethodsaremuchmorecapableincorporatingtheeffectsofoptionpositions.Withthespeedoftoday’scomputers,itisrelativelyeasyandfasttosimulateextremelycomplexprocessesAdvantages&DisadvantageofNonparametricMethodsComparedToParametric TheconceptofVaRissimpleandeasytoVaRallowstheriskofdifferentportfolios,assetclasses,ortradingoperationstobe

VaRcanbeusedforperformanceevaluation(calculationoftheratio etoAfirmsriskmanagerscanlookattheallocationofVaRandoptimizetheallocationofReliabilityofVaRasameasureofriskcanbeverifiedbyVaRestimationrequiresmanychoicesandcanbeverysignificantlyaffectedbytheseTheassumptionofnormalityleadstounderestimatesofdownside(tail)AVaRwillunderstatetheactuallossesincurredwhenliquidatingIncreasingcorrelationsmeanthatVaRmeasuresbasedonnormallevelsofcorrelationoverestimatediversificationbenefitsandunderestimatethemagnitudeofpotentialManyaspectsofriskare fiedorVaRfocusesonlyondownsideriskandextreme 结Extensionsof 概TheCVaRistheexpectedloss,giventhatthelossisequaltoorgreaterthantheIncrementalVaRthechangeinVaRfromachangeintheportfolioallocationtoaMarginalVaRthechangeinVaRfora1%increaseinthesecurity’sMarginalVaRmaybeusedtodeterminethecontributionofeachassettotheoverallmeasurestheVaRofthedifferencebetweenthereturnonaportfolioandthereturnonitsmanagers arkportfolioSensitivityandScenarioMeasures

概念、对SensitivityRiskMeasures:focusesontheeffectonportfoliovaluegivenasmallchangeinoneriskScenarioRiskMeasures:Whilesensitivityysisprovidesanestimateofthechangeinportfoliovalueduetoasmallchangeinasingleriskfactor,scenarioysisprovidesanestimateoftheeffectonportfoliovalueofasetofchangesofsignificantmagnitudeinmultipleriskfactors.Stresstests:ApplyextremenegativestresstoaparticularportfolioScenarios&HistoricalScenariosScenarios&HistoricalScenarios:UseasetofchangesinriskfactorsthathaveactuallyoccurredintheespeciallychangesduringaperiodoffinancialdisruptionandHypotheticalScenarios:Anysetofchangesinriskfactorscanbeused,notjustonethathashappenedinthepast.AhypotheticalscenariocouldhavemoreextremechangesinriskfactorsthanthosethathaveoccurredinthepastTheuseofPartiesthatuseleverage,suchasbanksandhedgefunds:pass/failLong-onlyassetmanagersdonottypicallyuseleverageandarethuslesslikely insolvent,makingapass/failtestforsolvencylessrelevanttoReversestresstesting:Todesignaneffectivehypotheticalscenario,itisnecessarytoidentifytheportfolio’smostsignificantexposures.SensitivityandScenarioRiskMeasures&VaRisaVaRisameasureoflossesandtheprobabilityoflargeSensitivityriskmeasurescapturechangesinthevalueofanassetinresponseachangeinriskfactor;theydo lusanythingabouttheSimilarity:estimatepotentialSimilarity:estimatepotentialTheVaRestimateisvulnerableifcorrelationrelationshipsandmarketarenotrepresentativeoffuture ysisallowstheriskassessmenttobefullyAdvantagesandLimitationsofSensitivityandScenarioRiskSensitivityandscenarioriskmeasurescancomplementVaRinthefollowingTheydonotneedtorelyonScenarioscanbedesigned eanyassumptionofnormalScenarios:allowingliquiditytobetakenintoLimitationsofScenarioRiskHistoricalscenariosareinterestingbutarenotgoingtohappeninexactlythesamewayHypotheticalscenariosmayincorrectlyspecifyhowassetswillco-HypotheticalscenarioscanbeverydifficulttocreateandItisverydifficulttoknowhowtoestablishtheappropriatelimitsona ysisorstress 了机结sensitivitymeasures,scenarioysisandstresstesting,leverageriskmeasures,VaRasset-liabilityHedgeassetfocusonrelativeriskEx-posttrackingerrorisameasureoveralookbackperiod.Ex-posttrackingerrorisusedforperformanceattributionandtoassessmanagerskilloverpriorperiods.pensionfundssurplus-at-InsuranceLifeinsurers:morehighlycorrelatedwiththemarketandbygeographicalRiskBudgeting:firstdeterminestheacceptableRiskBudgeting:firstdeterminestheacceptabletotalrisk,andthenPositionlimits:limitriskbecausetheyensuresomeminimumlevelofScenariolimitsarelimitsonexpectedlossforagivenStop-losslimitsrequirethatariskexposurebereducediflossesexceedaspecifiedamountoveracertainofReadingECONOMICSANDINVESTMENT整章以结论为 CF CF t ts

lt,s:realdefault-freeinterestinflation-linkedbondissuedby ernmentofadevelopedθt,s:expectedinflationPt

•nominaldefault-frees11lt,st,st,s

ρit,s:compensationofuncertaintyabouttheasset’sfuturecashCreditrisk,liquidityTheDiscountRateonRealDefault-freeBonds

Inter-temporalratem=marginalutilityofconsumptionfuture/marginalutilityofconsumptionWealthincreases→marginalutilityInter-temporalrateofsubstitutionislowerinthegoodstateoftheOne-periodrealrisk-freerateisinverselyrelatedtotheinter-temporalrateofsubstitution.Thatis,thehigherthereturntheinvestorcanearn,themoreimportantcurrentconsumption esrelativetofutureconsumption.Pricingas-PeriodFreePt,s=riskneutralpresentvalue(discountedattherisk-freerate)+covariance(discountforrisk-averseinvestors:Negativecovarianceterm→assetreturn>risk-freePositivecovarianceterm→assetreturn<risk-freeDefault-FreeInteresthighertrendrealeconomicgrowth→higherrealdefault-freeinterestratesGDPgrowthismorevolatile→realinterestratesarehigherTheYieldCurveonNominalDefault-freeBonds

compensatefortheexpectedinflation,θ ycompensationfortakingontheuncertaintyrelatedtofutureinflationtheexpectedinflation,πt,s+θBeinfluencedbytheinflationenvironmentandinflationexpectationsoverBeinfluencedbyrealeconomicactivity,whichisinfluencedbythesavingandinvestmentTheseinterestrateswillalsobeaffectedbythecentralbank’spolicyrate,whichshouldfluctuatetheneutralpolicyBEI=θt,sLong-YieldInvestorExpectations:expectinterestratestodecline→yieldcurvetobedownwardsloorTheTermSpreadandtheBusinessCycle:Termspread=long-termrate–short-termArecessionisoftenprecededbyaflattening,orevenaninversion,intheyieldDuringarecession,shortratesareoftenlowerbecausecentralbankstendtolowertheirpolicyandtheslopeoftheyieldcurvewilltypicallysteependuringaCorrelationbetweenthebondpriceandtheeconomicgrowthisernmentbondriskpremiumsarepositiveandrelatedtotheconsumptionhedgingbenefitsShort-datedbondshavebeenmorereliablehedgesagainstbadeconomicDefault-freerate=lt,s+πt,s+θt,s→interestrateCredit-risky

Creditpremium(creditspread)=γt,s→credit结Expectedloss=probabilityofdefault×(1–recoveryDefaultstendtoclusterarounddownturnsinthebusinesscycle.Defaultrateincreases.RecoveryratestendtobehigherwhentheeconomyexpandingandlowerwhenitisCreditPremiumsandTheBusinessBondspreadsdotendtoriseintheleaduptoandduringarecession,andtodeclineoncetheeconomycomesoutofrecession.Asthebusinesscycleturnsdown,andspreadswiden,thoseissuerswithagoodcreditratingtendtocreditriskybonds(corporateorsovereign)tendperformpoorlyinbadeconomic

IndustrialSectorsandCreditQuality:Duringrecession,thespreadontheconsumercyclicalsectorrosemoredramaticallyCompany-SpecificFactors:Ifthisabilitytomeetitsdebtobligationsdeclines,thenthespreaddemandedontheirdebtwillriseSovereignCreditRisk:importantin emergingEquitiesEquitiesandTheEquityRiskPremiumEquityriskpremium,

γit,s→Creditrisk

→equitypremiumrelativetocreditriskyEquityRiskPremiumandtheeconomiccycleEquitiesareabadhedgeforbad es,soequityriskpremiumbepositive(pro-Intimesofeconomicweaknessorstress,equityriskpremiumTheP/EtendstoriseduringperiodsofeconomicAnincreaseinexpectationoffuturerealearningsFallingrealinterestrates,possiblyassociatedwithfallingvolatilityinrealGDPAfallininflationAdeclineinuncertaintyaboutfutureAfallintheequityriskInvestmentCyclicalsectorhasgreatersensitivitytobusinessDuringeconomicexpansion,byrotatingintogrowthstocks,orsmall-capstocks,orcyclicalstocks,amanagercan,ifcorrect,outperformabroadequitymarketCommercialCommercialRealEstateBond-like: emightberelativelyEquity-like:valueofThecapitalvaluesarehighlysensitivetotheeconomicArecessionwillgenerallycausethesevaluestoThepro-cyclicalnaturemeansthatinvestorswilldemandahighriskBadhedgeagainstbad ReadingYSISOFACTIVEPORTFOLIOValueValueaddedActivereturn(valueadded):Rp=Rp–Alpha(risk-adjustedcalculationofvalueadded):αP=RP–Rp=Rp–NRAwi ,Δwi=wP,i–wB,i(ThesumoftheactiveweightsisRAwiRAi,RAi=Ri– RARPRBwP,jRP,jwB,jRB, RAwjRB,jwP,jRA,

12012

RA

MM12assetallocation→wjRB,12MMsecurityselection→wP,jRA,ComparingRiskandReturnSharperatioSharperatioisunaffectedbytheadditionofcashorleverage(createdbyborrowingfreecash)inaSameSharpeRatio→combination=portfolio+/-SameSharpeRatio,changevolatilityσC目标volatility)=wpσPwfcashorleverage比例1PSRRPPP

结论、计Ac原portfolio的Ac原portfolio的权重1clong或short σCcσ(σC:目标activeriskσ:原active••TheinformationratioisaffectedbytheadditionofcashortheuseofTheinformationratioisunaffectedbytheaggressivenessofactiveSameInformationRatio→combinationportfolio=activeportfolio+/-ben SameSharpeRatio,changeactiverisk→Closetindexfund:advertisesitselfasactiveClosetindexfund:advertisesitselfasactivebutisactuallyclosetobeinganindexMarket-neutrallong–shortequityfund:offsettinglongandshortpositions s(RR SR2=

+IR2→TheexpectedinformationratioisthesinglebestOptimal

22B BOptimalamountofactiverisk izingactiveriskor“aggressiveness”)→ASRBTheFundamentalLawofActiveManagementIRTCTheFundamentalLawofActiveManagementKeyThecorrelationReturnsμi Active Realized△ ICCORRAi,i ihigherIC,orabilitytoforecastreturns→addmorePortfolioconstruction:transfercoefficientTCCORi,w ii degreetowhichtheinvestor’sforecastsaretranslatedintoactiveBRthenumberofindependentdecisionsmadeperIR ERA BRIRTCIC ERATCICBROptimalOptimalamountofactiverisk→ATCIR*BBConstrainedportfolio’ssquaredsharperatio→SR2=SR2+BApplicationofTheFundamental 结GlobalEquityUnconstrainedportfolio:IRisinvarianttothelevelofactiveConstrainedportfolio:IRgenerallydecreaseswiththeaggressivenessofthestrategy,inaccordancewithanincreasinglylowertransfercoefficient.e():Time-series(择时):比如每个季度判断一次市PracticalLimitationsofTheFundamental 结InvestorstendtooverestimatetheirInvestorstendtooverestimatetheirownskillsForecastingabilitydiffersamongdifferentassetsegmentsandvariesover BR

N1N1Allthestocksinagivenindustryorallthecountriesinagivenregionthatarerespondingtosimilarcannotbecountedas yindependentdecisions,sobreadthislowerthanthenumberofBreadthcanincreasewellbeyondthenumberofsecuritieswithhedgingstrategiesusingderivativesorotherformsofarbitrage.Increasingtherebalancingfrequencymayincreasetherealizedinformationratio,butonlytotheextentsequentialactivereturnforecastsareindependentfromperiodtoReadingALGORITHMICTRADINGANDHIGH-FREQUENCYTheBasicsofAlgorithmicTrading

概念、对AlgorithmicAlgorithmictrading:atradingstrategythathasbeenautomatedthroughtheuseofacomputer.ComputerstradingalgorithmsmakedecisionsandexecutetradesthousandsoftimesfasterthanahumanExecutionHigh-frequencyTradingslicealargeorderintosmallera

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论