


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直角三角形的性质初中数学骨干教师工作坊C1906第七组谢桃平1.掌握直角三角形的性质,能利用直角三角形的性质定理进行有关的计算和证明;2.经历“计算—探索—发现—猜想—证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充;3.通过“计算—探索—发现—猜想—证明”的过程体验数学活动中的探索与创新,感受数学的严谨性,激发学生的好奇心和求知欲,培养学习的自信心.掌握直角三角形性质,能利用直角三角形的性质定理进行有关的计算和证明.能利用直角三角形的性质定理进行有关的计算和证明.一、情景导入感受新知问题:1.什么是直角三角形?直角三角形中的两锐角有什么关系?两条直角边与斜边有什么关系?2.(1)在直角三角形中,有一个锐角为52°,那么另一个锐角度数为__38°__.在Rt△ABC中,∠C=90°,∠A-∠B=30°,那么∠A=__60°__,∠B=__30°__.(2)在△ABC中,∠ACB=90°,CD是斜边AB上的高,那么与∠B互余的角有__∠A,∠BCD__,与∠A相等的角有__∠BCD__,与∠B相等的角有__∠DCA__.(3)在直角三角形中,两条直角边分别为6,8,斜边的长为多少?解:斜边的长为10.二、自学互研生成新知【自主探究】阅读教材P102-103的内容,探究下列问题:问题1:(1)画一个直角三角形;(2)量一量斜边AB的长度;(3)找到斜边的中点,用字母D表示;(4)画出斜边上的中线;(5)量一量斜边上的中线的长度.猜想:斜边上的中线与斜边长度之间有什么关系?经过画图和测量,我们知道:斜边上的中线等于斜边的一半.【合作探究】问题2:请试用演绎推理证明你的猜想已知,如图在直角三角形ABC中∠ACB=90°,CD是斜边AB上的中线,求证:CD=eq\f(1,2)AB.证明:延长CD到点E,使DE=CD,连结AE,BE.∵CD是斜边AB上的中线,∴AD=DB.又∵CD=DE.∴四边形ACBE是平行四边形.又∵∠ACB=90°,∴四边形ACBE是矩形,∴CE=AB,∴CD=eq\f(1,2)CE=eq\f(1,2)AB.结论:直角三角形斜边上的中线等于斜边的一半.【师生活动】①明了学情:关注学生对直角三角形的性质的理解与掌握情况.②差异指导:对学生在探究中产生的困惑及时引导,点拨.③生生互助:学生小组内交流讨论,相互释疑,达成共识.三、典例剖析运用新知【合作探究】【例】在Rt△ACB中,∠ACB=90°,∠A=30°,求证:BC=eq\f(1,2)AB.证明:作斜边AB上的中线CD,则CD=AD=BD=eq\f(1,2)AB(直角三角形斜边上的中线等于斜边的一半).∵∠A=30°,∴∠B=60°,∴△CDB是等边三角形.∴BC=BD=eq\f(1,2)AB.结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【变式迁移】如图,△ABC中,AB=AC,∠A=120°,EF垂直平分AB交AB于E,交BC于F.求证:BF=eq\f(1,2)FC.证明:连结AF.∵AB=AC,∠A=120°,∴∠B=∠C=30°,又∵EF垂直平分AB,∴BF=AF.∴∠BAF=∠B=30°,∴∠FAC=120°-∠BAF=90°,在Rt△AFC中,∠C=30°,∴AF=eq\f(1,2)CF,∴BF=eq\f(1,2)FC.四、课堂小结回顾新知通过本节课的学习,你对直角三角形又有了哪些新的认识?你对本节课的知识还存在哪些疑惑?请谈一谈你的想法和同学们一起分享.五、检测反馈落实新知1.若等腰三角形一腰上的高等于腰长的一半,则这个三角形的底角等于(A)A.75°或15°B.30°或150°C.75°D.30°2.已知△ABC中,∠A+∠B=∠C.若∠A是∠B的3倍,则∠B=°__.3.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为.,(第3题图)),(第4题图))4.如图,在△ABC中,∠ACB=90°,AB=10,AC=6,CD⊥AB于D,则CD=.5.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.证明:(1)∵DE⊥AB,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠DEA=∠C,∵AD平分∠CAB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年招聘辅导员的心理健康咨询知识试题及答案
- 高校辅导员考试新思维试题及答案
- 谈论农业经理人考试的时事热点与实际案例考察试题及答案
- 花艺师色彩搭配考题及答案
- 2025年中国工艺美术品行业发展现状、运行格局及投资前景分析报告(智研咨询)
- 2024年园艺师考试青少年园艺教育试题及答案
- 2024辅导员招聘考试的实战演练技巧试题及答案
- 园艺师社会责任感试题及答案
- 2024年农业经理人考试的风险与应对策略试题及答案
- 幼儿园试题难题大全及答案
- 《合规管理培训》课件
- 2025年高考政治一轮复习知识清单必修四《哲学与文化》重难点知识
- 2021年4月17日江苏事业单位考试《综合知识和能力素质》(管理岗客观题)
- 计算与人工智能概论(湖南大学)知到智慧树章节答案
- 飞机构造基础(完整课件)
- 三年级上册劳动《立体贺卡》课件
- 12万吨年丁二烯抽提装置、10-3万吨年MTBE-丁烯-1装置总承包工程施工组织设计
- 骨盆骨折治疗新进展
- 防范电信诈骗安全教育共建平安校园宣传课件
- DFMEA-磷酸铁锂电池案例
- 网络销售食品监督抽检抽样指南
评论
0/150
提交评论