液压专业毕业设计外文翻译_第1页
液压专业毕业设计外文翻译_第2页
液压专业毕业设计外文翻译_第3页
液压专业毕业设计外文翻译_第4页
液压专业毕业设计外文翻译_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TheAnalysisofCavitationProblemsintheAxialPistonPumpshuWangEatonCorporation,14615LoneOakRoad,EdenPrairie,Thispaperdiscussesandanalyzesthecontrolvolumeofapistonboreconstrainedbythevalveplateinaxialpistonpumps.Thevacuumwithinthepistonborecausedbytherisevolumeneedstobecompensatedbytheflow;otherwise,thelowpressuremaycausethecavitationsandaerations.Intheresearch,thevalveplategeometrycanbeoptimizedbysomeanalyticallimitationstopreventthepistonpressurebelowthevaporpressure.Thelimitationsprovidethedesignguideofthetimingsandoverlapareasbetweenvalveplateportsandbarrelkidneystoconsiderthecavitationsandaerations.__Keywords:cavitation,optimization,valveplate,pressureundershoots1IntroductionInhydrostaticmachines,cavitationsmeanthatcavitiesorbubblesforminthehydraulicliquidatthelowpressureandcollapseatthehighpressureregion,whichcausesnoise,vibration,andlessefficiency.Cavitationsareundesirableinthepumpsincetheshockwavesformedbycollapsedmaybestrongenoughtodamagecomponents.Thehydraulicfluidwillvaporizewhenitspressurebecomestooloworwhenthetemperatureistoohigh.Inpractice,anumberofapproachesaremostlyusedtodealwiththeproblems:(1)raisetheliquidlevelinthetank,(2)pressurizethetank,(3)boostertheinletpressureofthepump,(4)lowerthepumpingfluidtemperature,and(5)designdeliberatelythepumpitself.Manyresearcheffortshavebeenmadeoncavitationphenomenainhydraulicmachinedesigns.Thecavitationisclassifiedintotwotypesinpistonpumps:trappingphenomenonrelatedone(whichcanbepreventedbytheproperdesignofthevalveplate)andtheoneobservedonthelayersafterthecontractionorenlargementofflowpassages(causedbyrotatinggroupdesigns)inRef.(1).Therelationshipbetweenthecavitationandthemeasuredcylinderpressureisaddressedinthisstudy.EdgeandDarling(2)reportedanexperimentalstudyofthecylinderpressurewithinanaxialpistonpump.Theinclusionoffluidmomentumeffectsandcavitationswithinthecylinderborearepredictedatbothhighspeedandhighloadconditions.AnotherstudyinRef.(3)providesanoverviewofhydraulicfluidimpactingontheinletconditionandcavitationpotential.Itindicatesthatphysicalproperties(suchasvaporpressure,viscosity,density,andbulkmodulus)arevitaltoproperlyevaluatetheeffectsonlubricationandcavitation.Ahomogeneouscavitationmodelbasedonthethermodynamicpropertiesoftheliquidandsteamisusedtounderstandthebasicphysicalphenomenaofmassflowreductionandwavemotioninfluencesinthehydraulictoolsandinjectionsystems(4).Dularetal.(5,6)developedanexpertsystemformonitoringandcontrolofcavitationsinhydraulicmachinesandinvestigatedthepossibilityofcavitationerosionbyusingthecomputationalfluiddynamics(CFD)tools.Theerosioneffectsofcavitationshavebeenmeasuredandvalidatedbyasimplesinglehydrofoilconfigurationinacavitationtunnel.ItisassumedthatthesevereerosionisoftenduetotherepeatedcollapseofthetravelingvortexgeneratedbyaleadingedgecavityinRef.(7).Then,thecavitationerosionintensitymaybescaledbyasimplesetofflowparameters:theupstreamvelocity,theStrouhalnumber,thecavitylength,andthepressure.Anewcavitationerosiondevice,calledvortexcavitationgenerator,isintroducedtocomparativelystudyvariouserosionsituations(8).Morepreviousresearchhasbeenconcentratedonthevalveplatedesigns,piston,andpumppressuredynamicsthatcanbeassociatedwithcavitationsinaxialpistonpumps.Thecontrolvolumeapproachandinstantaneousflows(leakage)areprofoundlystudiedinRef.[9].Bertaetal.[10]usedthefinitevolumeconcepttodevelopamathematicalmodelinwhichtheeffectsofportplatereliefgrooveshavebeenmodeledandthegaseouscavitationisconsideredinasimplifiedmanner.AnimprovedmodelisproposedinRef.[11]andvalidatedbyexperimentalresults.Themodelmayanalyzethecylinderpressureandflowripplesinfluencedbyportplateandreliefgroovedesign.Manringcomparedprincipaladvantagesofvariousvalveplateslots(i.e.,theslotswithconstant,linearlyvarying,andquadraticvaryingareas)inaxialpistonpumps[12].Fourdifferentnumericalmodelsarefocusedonthecharacteristicsofhydraulicfluid,andcavitationsaretakenintoaccountindifferentwaystoassistthereductioninflowoscillations[13].Theexperiencesofpistonpumpdevelopmentsshowthattheoptimizationofthecavitations/aerationsshallincludethefollowingissues:occurringcavitationandairrelease,pumpacousticscausedbytheinducednoises,maximalamplitudesofpressurefluctuations,rotationaltorqueprogression,etc.However,theaimofthisstudyistomodifythevalveplatedesigntopreventcavitationerosionscausedbycollapsingsteamorairbubblesonthewallsofaxialpumpcomponents.Incontrasttoliteraturestudies,theresearchfocusesonthedevelopmentofanalyticalrelationshipbetweenthevalveplategeometricsandcavitations.Theoptimizationmethodisappliedtoanalyzethepressureundershootscomparedwiththesaturatedvaporpressurewithinthepistonbore.Theappropriatedesignofinstantaneousflowareasbetweenthevalveplateandbarrelkidneycanbedecidedconsequently.2TheAxialPistonPumpandValvePlateThetypicalschematicofthedesignoftheaxispistonpumpisshowninFig.1.Theshaftoffseteisdesignedinthiscasetogeneratestrokingcontainmentmomentsforreducingcostpurposes.Thevariationbetweenthepivotcenteroftheslipperandswashrotatingcenterisshownasa.Theswashangleisthevariablethatdeterminestheamountoffluidpumpedpershaftrevolution.InFig.1,thenthpiston-slipperassemblyislocatedattheangleof.Thedisplacementofthenthpiston-slipperassemblyalongthex-axiscanbewrittenasxn=Rtan()sin()+asec()+etan()(1)whereRisthepitchradiusoftherotatinggroup.Then,theinstantaneousvelocityofthenthpistonisx˙n=Rsin()+Rtan()cos()+Rsin()+e(2)wheretheshaftrotatingspeedofthepumpis=ddt.Thevalveplateisthemostsignificantdevicetoconstraintflowinpistonpumps.Thegeometryofintake/dischargeportsonthevalveplateanditsinstantaneousrelativepositionswithrespecttobarrelkidneysareusuallyreferredtothevalveplatetiming.Theportsofthevalveplateoverlapwitheachbarrelkidneystoconstructaflowareaorpassage,whichconfinesthefluiddynamicsofthepump.InFig.2,thetiminganglesofthedischargeandintakeportsonthevalveplatearelistedasand.Theopeningangleofthebarrelkidneyisreferredtoas.Insomedesigns,thereexistsasimultaneousoverlapbetweenthebarrelkidneyandintake/dischargeslotsatthelocationsofthetopdeadcenter(TDC)orbottomdeadcenter(BDC)onthevalveplateonwhichtheoverlapareaappearstogetherreferredtoas“cross-porting”inthepumpdesignengineering.Thecross-portingcommunicatesthedischargeandintakeports,whichmayusuallylowerthevolumetricefficiency.Thetrapped-volumedesigniscomparedwiththedesignofthecross-porting,anditcanachievebetterefficiency14].However,thecross-portingisFig.1Thetypicalaxispistonpumpcommonlyusedtobenefitthenoiseissueandpumpstabilityinpractice.3TheControlVolumeofaPistonBoreInthepistonpump,thefluidwithinonepistonisembracedbythepistonbore,cylinderbarrel,slipper,valveplate,andswashplateshowninFig.3.ThereexistsometypesofslipflowbyvirtueofrelativeFig.2Timingofthevalveplatemotionsandclearancesbetweenthosecomponents.Withinthecontrolvolumeofeachpistonbore,theinstantaneousmassiscalculatedas=(3)whereandaretheinstantaneousdensityandvolumesuchthatthemasstimerateofchangecanbegivenasFig.3Thecontrolvolumeofthepistonbore(4)wheredisthevaryingofthevolume.Basedontheconservationequation,themassrateinthecontrolvolumeis(5)whereistheinstantaneousflowrateinandoutofonepiston.Fromthedefinitionofthebulkmodulus,(6)wherePnistheinstantaneouspressurewithinthepistonbore.SubstitutingEqs.(5)and(6)intoEq.(4)yields(7)wheretheshaftspeedofthepumpis.TheinstantaneousvolumeofonepistonborecanbecalculatedbyusingEq.(1)as=+[Rtan()sin()+asec()+etan()](8)whereisthepistonsectionalareaandisthevolumeofeachpiston,whichhaszerodisplacementalongthex-axis(when=0,).Thevolumerateofchangecanbecalculatedatthecertainswashangle,i.e.,=0,suchthat(9)inwhichitisnotedthatthepistonborevolumeincreasesordecreaseswithrespecttotherotatingangleof.SubstitutingEqs.(8)and(9)intoEq.(7)yields(10)4OptimalDesignsTofindtheextremaofpressureovershootsandundershootsinthecontrolvolumeofpistonbores,theoptimizationmethodcanbeusedinEq.(10).Inanonlinearfunction,reachingglobalmaximaandminimaisusuallythegoalofoptimization.Ifthefunctioniscontinuousonaclosedinterval,globalmaximaandminimaexist.Furthermore,theglobalmaximum(orminimum)eithermustbealocalmaximum(orminimum)intheinteriorofthedomainormustlieontheboundaryofthedomain.So,themethodoffindingaglobalmaximum(orminimum)istodetectallthelocalmaxima(orminima)intheinterior,evaluatethemaxima(orminima)pointsontheboundary,andselectthebiggest(orsmallest)one.Localmaximumorlocalminimumcanbesearchedbyusingthefirstderivativetestthatthepotentialextremaofafunctionf(·),withderivative,cansolvetheequationatthecriticalpointsof=0[15].ThepressureofcontrolvolumesinthepistonboremaybefoundaseitheraminimumormaximumvalueasdP/dt=0.Thus,lettingtheleftsideofEq.(10)beequaltozeroyields(11)Inapistonbore,thequantityofoffsetsthevolumevaryingandthendecreasestheovershootsandundershootsofthepistonpressure.Inthisstudy,themostinterestingareundershootsofthepressure,whichmayfallbelowthevaporpressureorgasdesorptionpressuretocausecavitations.ThetermofinEq.(11)hasthepositivevalueintherangeofintakeports(),showninFig.2,whichmeansthatthepistonvolumearises.Therefore,thepistonneedsthesufficientflowin;otherwise,thepressuremaydrop.Inthepiston,theflowofmaygetthroughinafewscenariosshowninFig.3:(I)theclearancebetweenthevalveplateandcylinderbarrel,(II)theclearancebetweenthecylinderboreandpiston,(III)theclearancebetweenthepistonandslipper,(IV)theclearancebetweentheslipperandswashplate,and(V)theoverlappingareabetweenthebarrelkidneyandvalveplateports.Aspumpsoperatestably,theflowsintheaslaminarflows,whichcanbecalculatedas[16](12)whereistheheightoftheclearance,isthepassagelength,scenariosI–IVmostlyhavelowReynoldsnumbersandcanberegardedisthewidthoftheclearance(notethatinthescenarioII,=2·r,inwhichristhepistonradius),andisthepressuredropdefinedintheintakeportsas=-(13)whereisthecasepressureofthepump.Thefluidfilmsthroughtheaboveclearanceswereextensivelyinvestigatedinpreviousresearch.TheeffectsofthemainrelateddimensionsofpumpandtheoperatingconditionsonthefilmarenumericallyclarifiedinRefs.[17,18].ThedynamicbehaviorofslipperpadsandtheclearancebetweentheslipperandswashplatecanbereferredtoRefs.[19,20].Manringetal.[21,22]investigatedtheflowrateandloadcarryingcapacityoftheslipperbearingintheoreticalandexperimentalmethodsunderdifferentdeformationconditions.AsimulationtoolcalledCASPARisusedtoestimatethenonisothermalgapflowbetweenthecylinderbarrelandthevalveplatebyHuangandIvantysynova[23].Thesimulationprogramalsoconsidersthesurfacedeformationstopredictgapheights,frictions,etc.,betweenthepistonandbarrelandbetweentheswashplateandslipper.AlltheseclearancegeometricsinEq.(12)arenonlinearandoperationbased,whichisacomplicatedissue.Inthisstudy,theexperimentalmeasurementsofthegapflowsarepreferred.Ifitisnotpossible,theworstcasesofthegeometricsortoleranceswithempiricaladjustmentsmaybeusedtoconsiderthecavitationissue,i.e.,minimumgapflows.ForscenarioV,theflowismostlyinhighvelocityandcanbedescribedbyusingtheturbulentorificeequationas(14)wherePiandPdaretheintakeanddischargepressureofthepumpandandaretheinstantaneousoverlapareabetweenbarrelkidneysandinlet/dischargeportsofthevalveplateindividually.Theareasarenonlinearfunctionsoftherotatingangle,whichisdefinedbythegeometricsofthebarrelkidney,valveplateports,silencinggrooves,decompressionholes,andsoforth.CombiningEqs.(11)–(14),theareacanbeobtainedas(15)whereisthetotaloverlapareaof=,and

isdefinedasInthepistonbore,thepressurevariesfromlowtohighwhilepassingovertheintakeanddischargeportsofthevalveplates.Itispossiblethattheinstantaneouspressureachievesextremelylowvaluesduringtheintakearea(showninFig.2)thatmaybelocatedbelowthevaporpressure,i.e.,;thencavitationscanhappen.Topreventthephenomena,thetotaloverlapareaofmightbedesignedtobesatisfiedwith(16)whereistheminimumareaof=andisaconstantthatis

Vaporpressureisthepressureunderwhichtheliquidevaporatesintoagaseousform.ThevaporpressureofanysubstanceincreasesnonlinearlywithtemperatureaccordingtotheClausius–Clapeyronrelation.Withtheincrementalincreaseintemperature,thevaporpressurebecomessufficienttoovercomeparticleattractionandmaketheliquidformbubblesinsidethesubstance.Forpurecomponents,thevaporpressurecanbedeterminedbythetemperatureusingtheAntoineequationas,whereTisthetemperature,andA,B,andCareconstants[24].Asapistontraversetheintakeport,thepressurevariesdependentonthecosinefunctioninEq.(10).Itisnotedthattherearesometypicalpositionsofthepistonwithrespecttotheintakeport,thebeginningandendingofoverlap,i.e.,TDCandBDC()andthezerodisplacementposition(=0).Thetwosituationswillbediscussedasfollows:(1)When,itisnotalwaysnecessarytomaintaintheoverlapareaofbecauseslipflowsmayprovidefillingupforthevacuum.FromEq.(16),letting=0,thetiminganglesattheTDCandBDCmaybedesignedas(17)inwhichtheopenangleofthebarrelkidneyis.Thereisnocross-portingflowwiththetimingintheintakeport.(2)When=0,thefunctionofcoshasthemaximumvalue,whichcanprovideanotherlimitationoftheoverlapareatopreventthelowpressureundershootssuchthat(18)whereistheminimumoverlapareaof.Topreventthelowpistonpressurebuildingbubbles,thevaporpressureisconsideredasthelowerlimitationforthepressuresettingsinEq.(16).Theoverallofoverlapareasthencanbederivedtohaveadesignlimitation.Thelimitationisdeterminedbytheleakageconditions,vaporpressure,rotatingspeed,etc.Itindicatesthatthehigherthepumpingspeed,themoreseverecavitationmayhappen,andthenthedesignsneedmoreoverlapareatoletflowinthepistonbore.Ontheotherside,thelowvaporpressureofthehydraulicfluidispreferredtoreducetheopportunitiestoreachthecavitationconditions.Asaresult,onlythevaporpressureofthepurefluidisconsideredinEqs.(16)–(18).Infact,airreleasestartsinthehigherpressurethanthepurecavitationprocessmainlyinturbulentshearlayers,whichoccurinscenarioV.Therefore,thevaporpressuremightbeadjustedtodesigntheoverlapareabyEq.(16)ifthereexistssubstantialtrappedanddissolvedairinthefluid.Thelaminarleakagesthroughtheclearancesaforementionedareatradeoffinthedesign.Itisdemonstratedthatthemoreleakagefromthepumpcasetopistonmayrelievecavitationproblems.However,themoreleakagemaydegradethepumpefficiencyinthedischargeports.Insomedesigncases,themaximumtiminganglescanbedeterminedbyEq.(17)tonothavebothsimultaneousoverlappingandhighlylowpressureattheTDCandBDC.Whilethepistonrotatestohavethezerodisplacement,theminimumoverlapareacanbedeterminedbyEq.18,whichmayassistthepistonnottohavethelargepressureundershootsduringflowintake.6ConclusionsThevalveplatedesignisacriticalissueinaddressingthecavitationoraerationphenomenainthepistonpump.Thisstudyusesthecontrolvolumemethodtoanalyzetheflow,pressure,andleakageswithinonepistonborerelatedtothevalveplatetimings.Iftheoverlapareadevelopedbybarrelkidneysandvalveplateportsisnotproperlydesigned,nosufficientflowreplenishestherisevolumebytherotatingmovement.Therefore,thepistonpressuremaydropbelowthesaturatedvaporpressureoftheliquidandairingresstoformthevaporbubbles.Tocontrolthedamagingcavitations,theoptimizationapproachisusedtodetectthelowestpressureconstrictedbyvalveplatetimings.Theanalyticallimitationoftheoverlapareaneedstobesatisfiedtoremainthepressuretonothavelargeundershootssothatthesystemcanbelargelyenhancedoncavitation/aerationissues.Inthisstudy,thedynamicsofthepistoncontrolvolumeisdevelopedbyusingseveralassumptionssuchasconstantdischargecoefficientsandlaminarleakages.Thedischargecoefficientispracticallynonlinearbasedonthegeometrics,flownumber,etc.Leakageclearancesofthecontrolvolumemaynotkeeptheconstantheightandwidthaswellinpracticeduetovibrationsanddynamicalripples.Alltheseissuesarecomplicatedandveryempiricalandneedfurtherconsiderationinthefuture.Theresultspresentedinthispapercanbemoreaccurateinestimatingthecavitationswiththeseextensivestudies.NomenclaturethetotaloverlapareabetweenvalveplateportsandbarrelkidneysAp=pistonsectionareaA,B,C=constantsA=offsetbetweenthepiston-slipperjointandsurfaceoftheswashplate=orificedischargecoefficiente=offsetbetweentheswashplatepivotandtheshaftcenterlineofthepump=theheightoftheclearance=thepassagelengthoftheclearanceM=massofthefluidwithinasinglepiston(kg)N=numberofpistonsn=pistonandslippercounter=fluidpressureandpressuredrop(bar)Pc=thecasepressureofthepump(bar)Pd=pumpdischargepressure(bar)Pi=pumpintakepressure(bar)Pn=fluidpressurewithinthenthpistonbore(bar)Pvp=thevaporpressureofthehydraulicfluid(bar)qn,qLn,qTn=theinstantaneousflowrateofeachpiston(l/min)R=pistonpitchradiusr=pistonradius(mm)t=time(s)V=volumewk=thewidthoftheclearance(mm)x,x˙=pistondisplacementandvelocityalongtheshaftaxis(m,m/s)=Cartesiancoordinateswithanoriginontheshaftcenterline=Cartesiancoordinateswithanoriginonswashplatepivot=swashplateangleandvelocity(rad,rad/s)=fluidbulkmodulus(bar)=timingangleofvalveplatesattheBDCandTDC(rad)=theopenangleofthebarrelkidney(rad)=fluiddensity(kgm3)=angularpositionandvelocityoftherotatingkit(rad,rad/s)=absoluteviscosity(Cp)=coefficientsrelatedtothepressuredrop外文中文翻译:在轴向柱塞泵气蚀问题的分析本论文讨论和分析了一个柱塞孔与配流盘限制在轴向柱塞泵的控制量设计。真空是由柱塞的运动量引起的,需要由流动补偿,否则,低气压可能导致的气蚀和曝气。配流盘几何的研究,可以优化一些分析性的限制,以防止蒸气压以下的柱塞压力。配流盘的端口和缸体腰形窗口之间重叠的地方,设计时要考虑的空蚀和曝气。关键词:空蚀,优化,配流盘,负脉冲压力1介绍在水压机等液压元件中,空穴或气穴意味着,在低压区液压液体会出有空腔或气泡形成以及崩溃在高压地区,这将导致噪声,振动,这将会降低效率。空蚀对泵的使用是极为不利的,这是因为倒塌形成的冲击波可能像炸弹一样足以损坏元件。当其压力过低或温度过高时,液压油会蒸发。在实践中,许多方法大多用于处理这些问题,比如:(1)提高油箱中的液位高度,(2油箱加压,(3)提高泵的进口压力,(4)降低泵内流体的温度,(5)特意设计的柱塞泵本身,对其结构进行优化设计。在液压机设计中的气蚀现象,许多研究成果已取得一定的成果。在柱塞泵中,气蚀主要可以分为两种类型:一是与困油现象有关(这种现象可通过适当的设计配流盘来阻止困油现象的发生)和所观察到的层上收缩或扩大后的流动通道(由于旋转设计所造成的)。在这项研究中处理气蚀和测量气缸压力之间的关系。EdgeandDarling报道了关于轴向柱塞泵内的气缸压力的实验研究。其中包括流体势效应和气蚀在气缸内高速度和高负荷条件的预测。另一项研究概述了液压流体影响进气条件和汽蚀潜力的观点。它表明,物理属性(如蒸汽压力、粘度、密度和体积弹性模量)对适当地评估影响润滑和气蚀是至关重要的。一个相似的气蚀模型在热力学性质液体和蒸汽基础上的用来理解了基本的物理现象的质量流量减少和波动产生影响的液压工具和喷射系统。Dularetal开发了一套专业系统用它来监测和控制的液压机械和调查气蚀的可能性通过使用运用计算流体动力学(CFD)工具。通过一个简单的单翼配置在一个空化隧道,气蚀侵蚀作用已经被测量和验证。它假定了严重侵蚀经常是由于一个主要的空穴飞转的漩涡重复的崩溃所产生的。然后,在汽蚀强度通过一套简单流参数可能扩大: 上游速度,空腔长度和压力。一个新的空蚀装置,称为漩涡汽蚀生成器,介绍了各种侵蚀情况。更多的先前的研究已经被集中在阀板的设计,在轴向柱塞泵中活塞和泵压动力学与空穴现象相关联。控制体积的方法和瞬时流(泄漏)正在深刻地研究中。Bertaetal采用有限体积的概念发展了一个数学模型,压力平衡槽的形式已经被效仿和气态的汽蚀被认为是在一个简化的方式。一种改进的模型已经被提出且实验验证了其结果。该模型可以分析气缸压力和流量的涟漪影响压力平衡槽的设计。四种不同的数值模型的重点是液压液体的特点,考虑到空穴以不同的方法协助减少流量振荡。柱塞泵发展的经验表明,优化的空穴现象应当包括下列问题: 发生气蚀和空气释放、泵声学引起的噪声诱导、最大振幅的压力波动,转动力矩进展等。然而,这项研究的目的是修改配流盘的设计来防止气蚀造成侵蚀蒸汽或空气泡沫崩溃的墙壁上的轴向泵组件。与文学研究相反,这项研究主要集中在配流盘的几何形状和气蚀分析之间的关系的发展。此优化方法应用于分析的压力脉冲与活塞孔内饱和蒸汽压。2轴向柱塞泵,配流盘典型轴向柱塞泵的原理如图1所示。在这种情况下,轴偏移e的设计对降低成本是十分重要的。柱塞泵斜盘倾角度是可变的,决定每转的排量即决定柱塞泵的流量。如图一所示,第N个柱塞滑靴组件转过的转角为在第n个柱塞滑靴组件沿x轴的位移可以写成xn=Rtan()sin()+asec()+etan()(1)其中R为柱塞滑靴组件的分布圆半径。此刻,在第n个柱塞的瞬时速度是x˙n=Rsin()+Rtan()cos()+Rsin()+e(2)其中轴泵的旋转速度=ddt.配流盘是约束柱塞泵流量的最重要的设备。配流盘吸排油窗口的几何形状以及瞬时相对缸体腰形窗口的位置通常被称为配流盘的时间效应。配流盘开口与缸体底部的腰形窗口的重叠构建流程区域或通道,它限制了柱塞泵的流体动力学,影响着其力学性能。在图2中,在配流盘上吸排油窗口的角度分别为,.缸体配流腰形窗口的开启角度为。在某些设计,在缸体腰形窗口和吸排油窗口的相对位置在上死点或下死点出现叠区域被称为“cross-porting“在泵设计工程。正是由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论