




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是的直径,点,在上,若,则的度数为()A. B. C. D.2.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形3.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>34.如图,在△ABO中,∠B=90º,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是().A.⊙P的半径为B.经过A,O,B三点的抛物线的函数表达式是C.点(3,2)在经过A,O,B三点的抛物线上D.经过A,O,C三点的抛物线的函数表达式是5.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.6.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,47.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.28.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个9.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°10.已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A. B. C. D.11.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服12.如图,在中,是的中点,,,则的长为()A. B.4 C. D.二、填空题(每题4分,共24分)13.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.14.反比例函数y=﹣的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则=_____.15.半径为4cm,圆心角为60°的扇形的面积为cm1.16.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.17.若关于的一元二次方程有两个相等的实数根,则的值是__________.18.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.三、解答题(共78分)19.(8分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?20.(8分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?21.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.22.(10分)如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.23.(10分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)24.(10分)如图,在中,,,,求和的长.25.(12分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.26.如图,四边形、、都是正方形.求证:;求的度数.
参考答案一、选择题(每题4分,共48分)1、C【分析】先根据圆周角定理求出∠ACD的度数,再由直角三角形的性质可得出结论.【详解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BCD=∠ACB-∠ACD=90°-40°=50°.
故选:C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.2、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.3、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.4、D【分析】A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.【详解】解:如图所示,连接PC,∵圆P与AB相切于点C,所以PC⊥AB,又∵∠B=90º,所以△ACP∽△ABO,设OP=x,则OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半径为,故A选项错误;过B作BD⊥OA交OA于点D,∵∠B=90º,BD⊥OA,由勾股定理可得:,由面积相等可得:∴,∴由射影定理可得,∴∴,设经过A,O,B三点的抛物线的函数表达式为;将A(5,0),O(0,0),代入上式可得:解得,,c=0,经过A,O,B三点的抛物线的函数表达式为,故B选项错误;过点C作CE⊥OA交OA于点E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴点C坐标为,故选项C错误;设经过A,O,C三点的抛物线的函数表达式是,将A(5,0),O(0,0),代入得,解得:,∴经过A,O,C三点的抛物线的函数表达式是,故选项D正确.【点睛】本题考查相似三角形、二次函数、圆等几何知识,综合性较强,解题的关键是要能灵活运用相似三角形的性质计算.5、C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.6、A【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.7、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.8、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有
,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.9、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.10、D【解析】试题分析:由抛物线开口向上可知a>0,故A错误;由对称轴在轴右侧,可知a、b异号,所以b<0,故B错误;由图象知当x=1时,函数值y小于0,即a+b+c<0,故C错误;由图象知当x=-2时,函数值y大于0,即4a-2b+c>0,故D正确;故选D考点:二次函数中和符号11、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;
B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;
C、今天太阳从西边升起,是不可能事件,故本选项错误;
D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.
故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【解析】根据相似三角形的判定和性质定理和线段中点的定义即可得到结论.【详解】解:∵∠ADC=∠BAC,∠C=∠C,
∴△BAC∽△ADC,
∴,
∵D是BC的中点,BC=6,
∴CD=3,
∴AC2=6×3=18,
∴AC=,
故选:D.【点睛】本题考查相似三角形的判定和性质,线段中点的定义,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(每题4分,共24分)13、6cm【分析】利用相似三角形的周长比等于相似比,根据它们的周长之和为15,即可得到结论.【详解】解:∵两个相似三角形的对应角平分线的比为2:3,∴它们的周长比为2:3,∵它们的周长之和为15cm,∴较小的三角形周长为15×=6(cm).故答案为:6cm.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.14、﹣【分析】根据函数图象上点的坐标特征得到ab=﹣3,a+b=5,把原式变形,代入计算即可.【详解】∵反比例函数的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),∴ab=﹣3,b+a=5,则,故答案为:﹣.【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.15、.【解析】试题分析:根据扇形的面积公式求解.试题解析:.考点:扇形的面积公式.16、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.17、1【分析】因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【详解】根据题意可得:解得:m=1故答案为:1【点睛】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.18、【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=.故答案为.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.三、解答题(共78分)19、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)首先设一次函数解析式为:y=kx+b,然后根据函数图象,将两组对应值代入解析式即可得解;(2)结合点和函数图象即可得出其表示的实际意义;(3)根据题意列出一元二次方程,求解即可【详解】(1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)函数图象中点A表示的实际意义是当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克.(3)由题意得:(60﹣40﹣x)(10x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元..【点睛】此题主要考查一次函数图象的实际应用以及一元二次方程的实际应用,解题关键是根据题意,列出关系式.20、(1);(2)当t=2时,MN的最大值是4.【分析】(1)首先求出一次函数与坐标轴交点坐标,进而代入二次函数解析式得出b,c的值即可;
(2)根据作垂直x轴的直线x=t,得出M,N的坐标,进而根据坐标性质得出即可.【详解】解:(1)(1)∵一次函数分别交y轴、x
轴于A、B两点,
∴x=0时,y=2,y=0时,x=4,
∴A(0,2),B(4,0),将x=0,y=2代入代入y=-x2+bx+c得c=2将x=4,y=0代入代入y=-x2+bx+c,(2))∵作垂直x轴的直线x=t,在第一象限交直线AB于M,由题意易得从而得到当时,MN有最大值为:【点睛】在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.21、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.试题解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为1.考点:全等三角形的判定与性质.22、(1)四边形BEDF是菱形,理由见解析;(2)BE的长为10.【分析】(1)如图,由垂直平分线的性质可得,再由等边对等角和平行线的性质得,根据三线合一的性质可知是等腰三角形,且,从而得出四边形BEDF是菱形;(2)设,由题(1)的结论可得DE的长,从而可得AE的长,在中利用勾股定理即可得.【详解】(1)四边形BEDF是菱形,理由如下:是BD的垂直平分线∵四边形ABCD是矩形,即BD是的角平分线是等腰三角形,且∴四边形BEDF是菱形;(2)设,由(1)可得则又∵四边形ABCD是矩形在中,,即,解得所以BE的长为10.【点睛】本题考查了角平分线的性质、等腰三角形的性质、菱形的定义、勾股定理,掌握灵活运用这些性质和定理是解题关键.23、隧道AB的长为(1800﹣600)m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB的长.【详解】解:∵CDOB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在RtCAO中,tan∠CAO==tan60°,∴,∴OA=600,在RtCAO中,tan∠CBO==tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣600.答:隧道AB的长为(1800﹣600)m.【点睛】本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.24、,【分析】作CD⊥AB于D.在Rt△BDC求出CD、BD,在Rt△ACD中求出AD、AC即可解决问题.【详解】解:如图,过点作于点,在中,,,,在中,,∴,,∴.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国悬挂橡胶减振座市场现状分析及前景预测报告
- 2025至2030年中国微波组合盒行业投资前景及策略咨询报告001
- 2025至2030年中国异戊烷市场分析及竞争策略研究报告
- 2025至2030年中国庐山霉素注射剂行业发展研究报告
- 2025至2030年中国干白酒行业投资前景及策略咨询报告
- 2025至2030年中国工艺掸行业投资前景及策略咨询研究报告
- 2025至2030年中国工业缝纫机金属复合密封垫数据监测研究报告
- 2024年份7月婴幼儿微生物组个性化调理协议
- 高一联考试卷及答案甘肃
- 高三英语考试卷子及答案
- 风电制氢制甲醇一体化示范制氢制甲醇项目可行性研究报告写作模板-申批立项
- 《行业会计比较》教案
- 第三单元《课外古诗词诵读》课件2023-2024学年统编版语文九年级下册
- 2024年高考真题-历史(天津卷) 含解析
- 《数据的收集》课件
- 广州数控GSK980TA1-TA2-TB1-TB2-GSK98T使用手册
- 麦肯锡和波士顿解决问题方法和创造价值技巧
- DBJ33T 1320-2024 建设工程质量检测技术管理标准
- 《复发性流产诊治专家共识2022》解读
- GB/T 23862-2024文物包装与运输规范
- 九年级化学上册(沪教版2024)新教材解读课件
评论
0/150
提交评论