版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上册第十一章三角形中线段的相关应用专项训练类型1三角形中线的应用1.如图,已知BE=CE,ED为△EBC的中线,BD=8,△AEC的周长为24,则△ABC的周长为______.2.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm的两部分,则边AC的长为______.3.如图,已知△ABC的周长为33cm,AD是BC边上的中线,AB=eq\f(3,2)AC.(1)若AC=10cm,求BD的长;(2)若AC=12cm,能否求出DC的长?为什么?4.如图,AD是△ABC的中线,点E是AD的中点,连接BE,CE.若△ABC的面积是8,则阴影部分的面积为()A.2 B.4 C.6 D.85.如图,△ABC三边的中线AD,BE,CF的公共点为G,且AG∶GD=2∶1.若S△ABC=12,则图中阴影部分的面积是______.6.在△ABC中,已知点D,E,F分别为BC,AD,CE的中点.(1)如图1,若S△ABC=1,则S△BEF=______;(2)如图2,若S△BFC=1,则S△ABC=______.7.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2.若S△ABC=6,求S1-S2的值.类型2三角形高线的应用8.按要求画出图形,并回答问题:(1)在下列△ABC中,分别画出AB边上的高.(2)在方格纸中,过点C画线段AB的垂线,垂足为D,并量出点C到线段AB所在直线的距离.9.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,则∠BAC的度数为______.10.如图,在△ABC中,AB=2,BC=4.△ABC的高AD与CE的比是多少?11.如图,在△ABC中,AC=8,BC=6,AD,BE分别是边BC,AC上的高,且AD=6.5,则BE的长为______.12.如图,AE是△ABC的中线,EC=6,DE=2,则S△ABD∶S△ACE的值为______.13.如图,在△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC,垂足分别为E,F,G.求证:DE+DF=BG.14.如图,在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B,C不重合),作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,在点D的运动过程中,BE+CF的值是否发生改变?15.如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/s.设运动的时间为ts.(1)当t为何值时,CP把△ABC的周长分成相等的两部分?(2)当t为何值时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为12cm2?答案人教版八年级数学上册第十一章三角形中线段的相关应用专题复习练习题类型1三角形中线的应用1.如图,已知BE=CE,ED为△EBC的中线,BD=8,△AEC的周长为24,则△ABC的周长为40.2.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm的两部分,则边AC的长为48_cm.3.如图,已知△ABC的周长为33cm,AD是BC边上的中线,AB=eq\f(3,2)AC.(1)若AC=10cm,求BD的长;(2)若AC=12cm,能否求出DC的长?为什么?解:(1)∵AB=eq\f(3,2)AC,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴BD=eq\f(1,2)BC=4cm.(2)不能,理由如下:∵AB=eq\f(3,2)AC,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成△ABC,则不能求出DC的长.4.如图,AD是△ABC的中线,点E是AD的中点,连接BE,CE.若△ABC的面积是8,则阴影部分的面积为(B)A.2 B.4 C.6 D.85.如图,△ABC三边的中线AD,BE,CF的公共点为G,且AG∶GD=2∶1.若S△ABC=12,则图中阴影部分的面积是4.6.在△ABC中,已知点D,E,F分别为BC,AD,CE的中点.(1)如图1,若S△ABC=1,则S△BEF=eq\f(1,4);(2)如图2,若S△BFC=1,则S△ABC=4(提示:对比第(1)问,先作辅助线).7.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2.若S△ABC=6,求S1-S2的值.解:∵BE=CE,∴CE=eq\f(1,2)BC.∵S△ABC=6,∴S△AEC=eq\f(1,2)S△ABC=eq\f(1,2)×6=3.∵AD=2BD,S△ABC=6,∴S△ACD=eq\f(2,3)S△ABC=4.∴S1-S2=(S△ACD-S△AFC)-(S△AEC-S△AFC)=S△ACD-S△AEC=4-3=1,即S1-S2的值为1.类型2三角形高线的应用8.按要求画出图形,并回答问题:(1)在下列△ABC中,分别画出AB边上的高.(2)在方格纸中,过点C画线段AB的垂线,垂足为D,并量出点C到线段AB所在直线的距离.解:(1)如图.(2)如图.点C到线段AB所在直线的距离即为线段CD的长度.9.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,则∠BAC的度数为90°或50°.10.如图,在△ABC中,AB=2,BC=4.△ABC的高AD与CE的比是多少?解:∵S△ABC=eq\f(1,2)BC·AD=eq\f(1,2)AB·CE,∴4AD=2CE.∴AD∶CE=2∶4=1∶2.11.如图,在△ABC中,AC=8,BC=6,AD,BE分别是边BC,AC上的高,且AD=6.5,则BE的长为eq\f(39,8).12.如图,AE是△ABC的中线,EC=6,DE=2,则S△ABD∶S△ACE的值为2∶3.13.如图,在△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC,垂足分别为E,F,G.求证:DE+DF=BG.证明:连接AD,∵S△ABC=S△ABD+S△ADC,∴eq\f(1,2)AC·BG=eq\f(1,2)AB·DE+eq\f(1,2)AC·DF.又∵AB=AC,∴DE+DF=BG.14.如图,在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B,C不重合),作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,在点D的运动过程中,BE+CF的值是否发生改变?解:由S△ABC=S△ACD+S△ABD,得S△ABC=eq\f(1,2)AD·CF+eq\f(1,2)AD·BE=eq\f(1,2)AD·(CF+BE).∵△ABC的面积不变,而点D由点B运动到点C的过程中,AD的长度逐渐变大,∴BE+CF的值逐渐减小.15.如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/s.设运动的时间为ts.(1)当t为何值时,CP把△ABC的周长分成相等的两部分?(2)当t为何值时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为12cm2?解:(1)在△ABC中,∵AC=8cm,BC=6cm,AB=10cm.∴△ABC的周长为8+6+10=24(cm).∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm.∵运动速度为每秒2cm,∴2t=12,t=6,故当t为6时,CP把△ABC的周长分成相等的两部分.(2)∵当点P为AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴2t=13,t=6.5,故当t为6.5时,CP把△ABC的面积分成相等的两部分.(3)分两种情况:①当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兽医专家2025年度顾问咨询与技术支持合同2篇
- 2025版金融理财产品销售合同履约保证书4篇
- 2025年度出租车租赁与品牌推广合作合同3篇
- 2024礼品购销合同模板购销合同范本
- 2024版济宁房屋租赁合同范本
- 二零二四年专业相机租赁服务合同附带摄影师派遣及培训3篇
- 二零二五版茶叶种植基地土地流转租赁合同3篇
- 2025年养老护理机构PPP项目特许经营合同3篇
- 2025年度城市基础设施建设不定期借款合同3篇
- 二零二四年度2024绵阳租赁保证金合同模板3篇
- 触发点疗法:精准解决身体疼痛的肌筋膜按压疗法
- 化脓性中耳炎
- 探析小学语文教学中融合思政教育的课堂教学
- 医学科研诚信专项教育整治简洁工作总结范文
- 班主任班级管理经验分享PPT
- 小学英语单词汇总大全打印
- 卫生健康系统安全生产隐患全面排查
- GB/T 15114-2023铝合金压铸件
- 2023年考研考博-考博英语-武汉大学考试历年真题摘选含答案解析
- 货物验收单表格模板
- MT/T 323-1993中双链刮板输送机用刮板
评论
0/150
提交评论