版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高强度灰铸铁生产中不可忽视的技术问题完整可以直接使用,可编辑优质资料,欢迎下载)高强度灰铸铁生产中不可忽视的技术问题完整可以直接使用,可编辑优质资料,欢迎下载)高强度灰铸铁生产中不可忽视的技术问题1、摘要:灰铸铁是“面大量广"的常用金属结构材料。本文主要论述了合金元素硫、锰含量及其比例,微量元素钛和氮的控制,以及孕育剂加入量对灰铸铁组织和性能的影响。据统计,2007年我国铸件产量达到了3000万多吨,其中,灰铸铁占60-70%。由于灰铸铁具有独特的性能特点,它在机械、机床、冶金、汽车等行业的应用中占有非常重要的位置。改革开放30年来,我国的灰铸铁生产技术水平获得了很大提高。但与国外先进国家相比,还存在着较大差距。在高强度灰铸铁生产过程中,我国大多数工厂比较注重五大元素、合金元素、熔炼温度、铸造工艺等因素的控制,这些因素的控制对提高灰铸铁的内在质量和外在质量是至关重要的。但是,还有一些其他因素没有引起人们足够的重视,这些同样对灰铸铁的质量有着重要影响,譬如,元素硫与锰的含量与比例,微量元素钛、氮的控制以及孕育剂加入量等细节的掌握。本文就这些因素对灰铸铁组织和性能的影响进行讨论,抛砖引玉,以期引起人们的注意。1硫、锰的控制硫过去,由于我国的灰铸铁和球墨铸铁大部分利用冲天炉熔炼,铁液的增硫比较严重,导致原铁液的含硫量较高,使得铸铁的铸造性能、力学性能降低,球化效果不好,所以,在人们的记忆中硫是一个有害元素。随着电炉熔炼工艺的发展,可以容易获得含硫量低的铁液,这对处理球墨铸铁非常有利。但是,有些工厂在灰铸铁生产中发现,电炉灰铸铁的材质性能还不如冲天炉好。因此,硫不能被简单的被认为是一个有害元素。在灰铸铁生产中发现,硫量控制在一定范围内,随着硫量的增加,片状石墨长度变短,石墨形态变得弯曲,而且石墨的头部变得钝化,并细化共晶团,提高强度。为什么硫在一定范围内,促进石墨化,改善石墨形态?硫在铁水中的溶解度很低,对Fe-C系平衡相图的影响不是很大。但硫降低碳在铁水中的溶解度,理应是一个促进石墨化的元素,实际上它对石墨化的影响比较复杂。硫对铸铁的凝固呈现双重作用【1】,一方面,硫与Mn、Sr、Ba等元素形成硫化物,为共晶石墨的成核提供基底,增加共晶团数量;另一方面,硫作为表面活性元素,富集在结晶前沿,会抑制共晶团的生长,增加结晶过冷度,白口倾向增大。硫可溶于液态铸铁中,但不溶于凝固的奥氏体和共晶团中,所以适当的硫(0.04—0.10%S)富集于共晶团的边界而干涉原子的扩散,从而限制共晶团的生长,使石墨分枝减少,导致生成厚而短的片状石墨。当硫含量较低(<0.03%)时,结晶前沿硫阻挡层的限制较弱,同时,缺乏硫化物石墨晶核,降低孕育效果,则易于生成大个共晶团的D型石墨和菊花状石墨。当铁液中的含硫量增加到0.04—0.10%时,铸铁的孕育效果增强,同时铁水的表面张力6降低,铁水与石墨的湿润角9减小,使得更多的硫化物基底成为石墨核心,共晶团数增加,A型石墨取代了D型石墨。当铸铁的硫量超过0.11%,石墨由片状又逐渐返回到丛状D型石墨【2】。这是由于当含硫量较高时,硫对铸铁结晶生长的抑制作用加强,使结晶的过冷度加大,造成有利于过冷石墨生长条件,甚至产生白口组织。经过大量生产和试验发现,将含硫量控制在0.06-0.10%范围内,可以增强孕育效果,改善石墨形态,对提高灰铸铁强度是有利的,同时,又能改善铸铁的机加工性能【3】。对于电炉熔炼灰铸铁,经常遇到含硫量低的情况,必须采取增硫措施,才能获得优质灰铸铁件。锰在普通灰铸铁中,锰一直作为合金元素控制基体的珠光体含量,通常认为加锰可以提高灰铸铁的强度和硬度。实际上,锰对灰铸铁的强度性能的影响具有双重作用【4】:一方面,锰能促进珠光体的形成,细化珠光体,有助于提高强度;另一方面,含锰量太高,影响铁液结晶时的形核,使共晶团数量减少,石墨粗大,甚至可能出现过冷石墨,从而使铸铁的强度降低。近年来,通过生产实践证明,灰铸铁强度并不是随锰量提高而增加,如在汽缸盖生产中,锰量增加,灰铸铁抗拉强度降低,如表1所示【5】。表1垣掀瑟性能的影响试验/序号表1垣掀瑟性能的影响试验/序号qMn咖抗拉强度g3-Oratn试样e50min试麻中。衲'33驴250^0.70^'30皿245^Q.95-315户23&$1&丑耳育。.35"3.3%C,0.2%Cr,Q.55%Cu.,。.。2独,。皿%P,。.11%9:在铁液中,锰与硫化合形成MnS,随着锰量增加,与锰结合的硫量就大,使铁液中的自由硫含量降低,抑制了硫的有利作用,石墨长度增加,端部钝化效果变差,导致铸铁性能下降。另外,形成的大量MnS夹杂物,一部分形成石墨核心,另一部分则会发生聚集,形成局部密集的MnS排列,消弱了基体的强度。因此,含锰量增加,灰铸铁的强度降低。另外,有资料表明【6】,锰对灰铸铁强度的影响与碳当量有关。当碳当量为3.65-3.95%时,其抗拉强度随着锰量的增加显着降低。当碳当量为3.96-4.15%时,其抗拉强度随着锰量的增加有所提高。(3)Mn/S比由于硫在灰铸铁则会具有双重作用,同时,锰与硫化合形成的MnS又具有核心功能,但过多的MnS对灰铸铁的强度没有益处。所以,硫和锰的含量在铸铁中存在着相互制约的关系,即存在着一个合理的Mn/S。通常认为,当S<0.2%时,以Mn=1.7S+0.3来考虑锰含量。生产实践证明【6】,Mn/S对灰铸铁的性能有较大的影响。当CE为3.70%~3.85%时,ob随Mn/S的增大而降低;当CE为3.90%~4.05时,ob随Mn/S的增大先降低然后提高。当CE为3.70%~3.95%时,Mn/S=3~5,抗强度较佳,取Mn/S=4;当S=0.07%~0.15%时,Mn0.3%~0.6%。当CE为3.96%~4.05%时,Mn/S=5~7,抗拉强度较佳,取Mn/S=6,当S=0.07%-0.15%时,Mn0.4%~0.9%。2钛的控制钛是强烈形成碳化物,与碳、氮、氧具有很强的化学亲和力,形成TiN、TiC、或Ti(NC),其硬度极高(TiC3200Hv,VC2800Hv),常以颗粒状存在于铸铁基体中。少量的Ti可以细化石墨,但随着钛含量的增加,D型石墨增多,并且,Ti分布在D型石墨区域。当Ti含量超过0.15%,D型石墨达到95%。Ti对灰铸铁抗拉强度有较大的影响【7】。当含Ti量在0.13%以下时,灰铸铁的抗拉强度随含Ti量的增加而下降,含Ti量为0.13%时,出现了最低值222.20MPa;当含Ti量大于0.13%时,其抗拉强度随含Ti量的增加而升高,当含Ti量增加到0.36%时,抗拉强度升高到271.79MPa。Ti对灰铸铁硬度也有较大的影响。当含Ti量在0.04%以下时,随Ti量的增加硬度下降;当含Ti量大于0.04%时,其硬度随含Ti量的增加而增加;当含Ti量为0.36%时,硬度高达226HB。Ti含量小于0.03%时,铁液的白口倾向减小,具有提高灰铸铁冶金质量指标的趋势。值得注意的是,含钛量的大小对灰铸铁的加工性能影响较大【8】。随着钛含量的增加,刀具磨损严重,同时,影响加工铸件的表面光洁度。3氮的控制一般情况下,氮在灰铸铁中含量较低,生产单位大都不具备化验氮的手段和仪器,所以,它对灰铸铁的作用没有引起人们的足够重视。研究表明【9】,氮对灰铸铁的组织有较大的影响,主要作用表现两个方面:一是对基体组织的影响,二是对石墨形态的影响。氮降低灰铸铁的共析转变温度,并使得共析转变温度区间加大【10】。氮对灰铸铁基体的影响表现在三个方面:一是氮可以使初生奥氏体枝晶臂间距减小,二是氮作为碳化物稳定元素,促进铸态珠光体的含量增加和稳定性,三是有效地促进共晶形核,细化基体组织,增加珠光体和铁素体的显微硬度。氮对铸铁石墨的形态、数量、分布有很大影响。日本张博等人的研究表明,铸铁中吹入氮气,不加入任何球化元素,可以使石墨球化。对于普通灰铸铁,加入适量的氮可使得片状石墨长度缩短、弯曲程度增加、端部钝化、长宽比减小。因此,灰铸铁中含有一定的氮,可显着提高强度和硬度。生产实践证明,在相同化学成分条件下,冲天炉熔炼铁液浇注的铸件力学性能低于电炉熔炼。通常认为,其原因是冲天炉铁液温度低,存在着炉料遗传问题。实际上,这与铁液的含氮量有关。冲天炉熔炼时,由于使用生铁量较多,而高碳生铁的含氮量较低,一般冲天炉灰铸铁中的含氮量为40-70ppm【11】。通常废钢的含氮量比铸造生铁高的多,用感应电炉熔炼铸铁时,炉料中所用生铁较少,废钢比例较大,另外,电炉熔炼多使用增碳剂,而大多数增碳剂中氮含量较高,所以,感应电炉熔制的灰铸铁含氮量比较高。一般,炉料中废钢比例越大,铸铁中含氮量越高,如表1所示【11】。另外,需要指出,不同炼钢工艺获得的废钢的含氮量也是不同的,如表2所示。表1靖炼方式利废钢加入量对铁液含氮量的景匆如熔化方式。含氮1既财废钢加人比例学冲天炉『”40-70^ '无芯感地炉『30-5。祖15V,无芯感应炉4SO-120^网野:尢芯感应炉F>140^ 、表N不同膝燎方注钢中含盘量含氨量ppm-曦悝电帼炉魅隹转炉-眼磷性恻吹转炉『20-6(k如-汕庙曜性炉建轶』20-30■-氮是廉价的资源,对改善灰铸铁的组织和力学性能具有积极的作用,在当今铁合金价格飞涨的形势下,有效利用氮对灰铸铁进行微合金化是值得重视的技术。但是,也应该充分注意过量的氮将造成气孔甚至微观裂纹缺陷。因此,在氮的应用中,应注重其科学性,充分合理地利用氮的积极作用,尽量避免其消极作用。4孕育剂加入量控制孕育处理是高强度灰铸铁生产中的重要技术环节。孕育的主要目的是:促进石墨化,减少白口倾向;改善断面均匀性;控制石墨形态,减少过冷石墨,获得细小的A型石墨;增加共晶团数量;改善力学性能和其他性能。由于孕育可显着提高共晶团数量,有些工厂为了提高灰铸铁的强度,认为孕育剂加入量越多越好,有的达到0.8-1.0%。实际上这是一个错误的认识。孕育剂加入量是孕育工艺中必须考虑的一个重要因素。加入量太少,将导致孕育不足产生白口和硬度太高的现象,从而使力学性能和加工性能降低。但是,孕育剂加入量过多,并不能增加孕育效果,可能带来以下不利影响:过多的孕育剂加入量,使铁液降温增加,可能造成熔化不完全,增加夹渣的可能性;使铁液的收缩量加大而生产缩孔的可能性加大;由于共晶团数过多,导致粥状凝固,石墨化膨胀增加产生型壁位移,而易产生缩松,造成铸件的渗漏。生产实践发现【3】,有意识的降低原铁液的含硅量而加大孕育量,灰铸铁的力学性能并不比高硅原铁液通过适量孕育得到力学性能好。一般认为,对原铁液尽量控制较高的含硅量,将孕育量控制在0.4%左右为宜。通常所讲的强化孕育处理,不是指加大孕育剂用量,而是指选择合适的优质孕育剂,改进孕育工艺方法。5结束语当前,随着市场竞争的加剧,灰铸铁作为一种传统的金属结构材料,正面临着质量、性能和价格的严重挑战。铸造企业应顺应灰铸铁材质高强度化、高附加值化和工艺稳定化的趋势,提高铸件质量,加大技术开发力度,籍以全面提升产品和服务质量,增强市场竞争力,提高技术经济效益。在灰铸铁的生产过程中,以往人们只注重常规五大元素对铸铁材质的影响,而对其他一些微量元素认识不足,仅仅有的也是一个定性认识。近年来,由于铸造技术的进步,熔炼设备也在不断的更新,焦炭价格节节攀升,冲天炉熔炼成本逐渐增加,很多企业正在考虑用电炉代替冲天炉熔化铁液。电炉熔炼固然有其冲天炉不可比拟的优点,但电炉熔炼也失去了冲天炉熔炼的一些优点,这样,某些微量元素对灰铸铁的影响也就反映出来。因此,要想获得优质灰铸铁件,除了严格控制常规工艺外,对于其他容易被人们忽略的技术问题应给予足够的重视。2、如何改善铸件的内在与外观质量,提高铸件的技术含量,应对市场的竞争,是国内部分生产企业所面临的课题。铸件生产中的每个环节对质量都有着重要影响,不可忽视。现将本人在实际工作中总结的一些技术措施归纳如下,供借鉴。一、 砂芯和砂型的刚性砂型浇注后,由于铁液的静压力或凝固而引起的膨胀力,常导致型壁移动和砂芯溃散,这就会使铸件产生内部缩孔和表面缩陷。因此为使铸件尺寸稳定,要最大限度地使铸型紧实。为了节约造型材料,造芯时广泛采用了空心砂芯,它比实体芯轻,故热容量小,凝固速度慢,这会导致砂型扩张或砂芯溃散。此外,铁液可能通过芯头或砂芯上的裂纹而渗入其中空部分,这也会使铸件产生缺陷。为了提高空心砂芯的刚性,可用湿型砂或水玻璃砂充填;也可将壳芯作成两半,其内部设置加强筋,造芯后粘合可得到坚硬的砂芯。二、 正确选择浇注温度浇注温度过低时可能形成的缺陷硫化锰气孔此种气孔位于铸件表皮以下且多在上面,常在加工后显露出来,气孔直径约2〜6mm。有时孔中含有少量熔渣,金相研究表明,此缺陷是由MnS偏析与熔渣混合而成,原因是浇注温度低,同时铁液中含Mn和S量高。为防止这种缺陷,用冲天炉化铁时可在多孔材料的浇包中用气流连续脱S,将S降至0.06%〜0.08%。这样的含S量和适宜的含Mn量(0.5%〜0.65%),可以显著改善铁液纯度,从而有效地防止这类缺陷。液体夹渣加工后铸件表皮之下会发现一个个单体的小孔,孔的直径一般为1〜3mm。个别情况下只有1~2个小孔。金相研究表明,这些小孔与少量的液体夹渣一起出现,但该处未发现S的偏析。研究表明,这种缺陷与浇注温度有关,浇注温度高于1380°C时,铸件中未发现这种缺陷,故浇注温度应控制在1380—1420C。值得一提的是改变浇注系统设计,未能消除此缺陷,故此种缺陷可以认为是由于浇注温度低以及铁液在微量还原气氛下浇注时形成的。砂芯气体引起的气孔气孔和多空性气孔常因砂芯排气不良而引起。因为造芯时砂芯多在芯盒中硬化,这就常使砂芯排气孔数量不够。为了形成排气孔,可在型芯硬化后补充钻孔。试验表明,改善型芯通气系统,可使浇注温度有较大的调整余地。浇注温度过低最常见的原因是浇注前,铁液在敞口的浇包中长时间运输和停留而散热。用带有绝热材料的浇包盖,可以显著地减少热损失。浇注温度过高浇注温度过高会引起砂型涨大,特别是具有复杂砂芯的铸件,当浇注温度>1420C时废品增多,浇注温度为1460C时废品达50%。在生产中,利用感应电炉熔炼能较好地控制铁液温度。三、 晶核的形成(1)孕育的影响孕育处理有时也会增加铸造缺陷,因为强烈孕育而急剧生核的铸铁件,形成碳化物的倾向增大了。所以建议孕育处理时孕育剂的用量能防止白口就可以了,健全铸件中的晶核比有缩孔的铸件要少的多。(2)硫的作用由于大多数废钢中含S量低,故电炉熔化废钢时,只能获得含S量低(M0.05%)的铸铁。此种铸铁对许多孕育剂来说不起作用,原因是孕育衰退的很快,所以用废钢在电炉中熔化时,常常在铸件中产生白口。故有时采用含硫量相当高的增碳剂,这样可使最终ws>0.05%,以保证充分吸收孕育剂。铁液的保温和过热温度近年来,人们倾向于用电炉熔化并保温铁液,但提高过热温度和增加保温时间会减少晶核的形成,故有产生白口的危险。考虑到经济和材料性能方面的原因,长时间保温时其温度应尽可能低些。四、 因砂芯引起的铸件尺寸误差砂芯受热时首先是膨胀,然后产生塑性变形,这种在高温下所引起的变化与所用的型砂以及粘结剂的分解有关。硬化温度和硬化时间的影响树脂砂的最初膨胀和热塑性同硬化温度和时间有关。硬化时间长的砂芯,其一次和二次膨胀就大,可能带来变形问题;而硬化时间短时,砂芯膨胀小且分解快。所以严格控制硬化时间和温度,对于制造高温性能稳定的砂芯是十分重要的。砂芯涂料的影响大部分砂芯表面要刷涂料,经试验发现,耐火涂料渗入砂芯表面的深度对砂芯变形有很大影响,当涂上含有表面活性剂的涂料时、因渗透深度大而防止了二次膨胀。五、 结语本文所总结的一些方法对生产优质灰铸铁是十分重要的。在技术控制中,首先是应用金相检验法来鉴定缺陷。其次借助于化学分析法来检验,有了正确的鉴别方法,就比较容易找到防止缺陷的措施3、球化不良的特征是在铸件或式样的银白色的断口上,分布有肉眼可见的黑点,观察其显微组织时,除球状石墨外,还存在大量的片状石墨。球化不量的铸件,其机械性能往往达不到牌号要求,从而使铸件报废。产生球化不良的主要原因是:球化元素残余量不足;原铁水含硫量过高或铁水氧化严重;铁水中存在干扰元素等。造成球化元素残余量不足的原因有:球化剂加入量不足或其中镁含量不足;铁水温度过高,处理时烧损严重;或处理温度过低,包底有冻结现象,铁水硫、氧含量高等。针对上述原因采取必要的措施后,一般总能解决问题数值模拟技术在大型锻件生产中的应用摘要数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。在钢锭凝固方面,有限元模拟程序MIPS可以分析凝固过程中温度场的分布,确定不同时刻凝固前沿的位置,而且能预测缩孔和疏松的位置及尺寸。使用该程序对220吨钢锭的生产工艺进行优化,成功地解决了疏松进入锭身的问题。在锻造方面,已开发出了基于ANSYS的三维大变形弹塑性、弹粘塑性程序,可以分析复杂的三维金属塑性成形问题。热处理专用软件NSHT不仅可以分析加热、淬火及回火过程中温度场分布,而且可以给出应力的分布及相态的变化过程,并已在实际生产中取得了成功。刖言大锻件生产具有单件、小批的特点。生产前需要大量的人力和物力准备原材料、模具或辅具,前期投入相当大,一旦产品报废,将造成很大的损失,这对工艺制定的合理性提出了很高的要求。在生产新产品或制定新工艺时,工艺人员往往无法根据经验确定工艺是否合理,只能采用大量实验的方法进行研究。由于大型锻件尺寸较大,不可能进行1:1的实物实验,而小件实验有时会与实际生产过程相差过大。而且物理实验通常只能给出工艺过程某个阶段的结果,无法全面了解整个工艺过程,具有一定的局限性。由于大锻件生产的这些特殊性,采用先进的数值模拟技术改变工艺制定过程中仅凭经验决定的现状是具有重要意义的。1数值模拟技术在现代制造中的地位和作用随着计算机技术的飞速发展,人类社会已经步入了信息时代。计算机及网络不仅改变了人们生活方式,也同样改变了传统机械制造的概念与方法。随着计算机辅助技术(CAX)的广泛应用,计算机已经深入到工业生产的各个环节之中。一个现代的产品制造过程可以由图1来描述。当接到生产任务时,首先采用CAD(ComputerAidedDesign)系统进行产品设计,其设计结果将由CAE(ComputerAidedEngineering)系统对其生产工艺的可行性及合理性进行评估,如果其不满足制造要求或所需要成本太高,将返回到CAD系统中进行重新设计:如果通过了CAE的评估,就将采用CAM(ComputerAidedManufacturing)系统进行实际的生产制造。这一生产模式已在工业发达国家得到了广泛的应用,并且近年来更提出了并行工程技术(ConcurrentEngineering)与虚拟制造技术(VirtualManufacturing)等新概念和新方法,将产品设计、工艺制定、生产制造及管理中的CAD、CAE、CAM、CAPP、MRP等计算机辅助技术,通过先进的信息技术结合起来,从而达到进一步缩短产品设计、制造周期,提高产品质量,降低成本,增强产品竞争能力的目的。但不论哪一种方法,CAD/CAE/CAM等仍是整个计算机辅助技术的核心与基础。
CADCAECAMCADCAECAM图1现代产品制造过程示意图数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或辅具制造之前,在计算机中对工艺的全过程进行分析。不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测可能存在的缺陷;通过改变工艺参数对不同方案进行模拟分析,可以从各方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量,减少材料消耗,提高生产效率,缩短试制周期等方面显示出无可比拟的优越性。在工业发达国家,数值模拟技术已被认为是生产中必不可少的一个环节,目前在国内数值模拟技术也早已走出象牙塔,并已在实际生产中取得了巨大成功。本文所提到的例子,都具有明确的生产背景,是近十多年来我们利用数值模拟方法解决大锻件生产实际问题中较为成功的例子。2数值模拟技术在大型锻件生产中的应用实例从八十年代中期开始,清华大学机械工程系由刘庄教授领导的课题组就一直从事数值模拟技术在大锻件生产上应用的研究,进行了大量有意义的工作。从钢锭浇注、锻件生产及锻后热处理,所进行的研究工作覆盖了大锻件热加工生产的各个环节,完成了可以用于钢锭凝固过程模拟及缺陷预测,锻造过程模拟及工艺优化,淬、回火过程温度及应力场分析的计算程序。通过与各生产厂家的密切合作,这些程序已经在生产中得到了实际应用,计算结果与实际情况相当吻合,充分证明了程序的可靠性。而且利用这些软件已经对很多实际生产工艺进行了优化,取得了显著的经济效益。这些软件可以为大锻件的热加工工艺制定提供一个全面的CAE解决方案,能够有效地提高工艺制定的合理性,提高生产效率。2.1钢锭凝固过程模拟及缺陷预测众所周知,大型锻造用钢锭中一般存在缩孔、疏松、夹杂和偏析等缺陷。这些缺陷的存在会增大材料的消耗,而且可能会影响到后续锻造工序。认识缺陷形成及分布的规律,并进而提出合理的铸锭工艺,对于提高大锻件质量、缩短生产周期、降低材料消耗具有重大意义。从八十年代中期开始,作者与第一重型机器厂合作,对钢锭凝固过程的温度场进行了大量研究,建立了钢锭凝固中传热过程的数学模型。同时对发热剂、保温剂的发热机理进行了深入的探讨,并建立了相应的数学模型。在此基础上开发出一套专用的有限元模拟程序MIPS。MIPS可以分析凝固过程中温度场的分布,确定不同时刻凝固前沿的位置,而且能预测缩孔及疏松的位置及尺寸。使用该程序对一重220吨钢锭的生产工艺所进行的优化,成功地解决了疏松进入锭身的问题。图2显示了工艺改进前后,缩孔及疏松的模拟结果。
(a)原工艺 (b)改进工艺图2220吨钢锭上缩孔疏松缺陷的分布采用MIPS软件并结合正交设计的方法,对钢锭结构等工艺参数对缩孔大小的影响进行了研究,得出了“冒口端部条件对缩孔疏松的影响最显著,其次是侧壁耐火砖的导热系数,再次是锭身锥度,而锭身高径比则影响不大”的结论。这对于工艺人员掌握钢锭生产规律,并优化工艺会有很大的帮助。MIPS软件不仅在普通钢锭的凝固模拟及缺陷预测中取得了成功,而且已成功地应用到无冒口或小冒口钢锭,定向结晶锭以及空心钢锭的研究当中。尤其在定向结晶锭中,通过引入流场,对凝固过程中的传质过程进行了数学描述,从而能够准确地预测出钢锭的偏析情况。在大型钢锭凝固过程中,锭模出现裂纹甚至报废的现象也是不容忽视的。在MIPS软件成功应用的基础上,我们又开发了三维钢锭锭模的应力分析程序,有助于解决这一问题。2.2锻造过程模拟及工艺优化钢锭需要经过锻造才能达到产品所希望的形状,这是大锻件生产
关键的一环,它的成功与否直接影响着整个生产。以前开发的一些程序,由于大多针对某一具体的工艺过程,不具备造型功能,在模具运动或边界条件的施加等方面存在着很大的局限性,通用性比较差。一旦遇到新的问题,通常要对程序作较大的修改,无法满足锻造过程模拟的需要。针对这一问题,我们采用与世界上成熟的商品化软件,如ANSYS相结合的道路,利用ANSYS完善的前、后期处理功能,成功地解决了ANSYS不能进行网格重划的难题,开发出了一套二维和三维的弹塑性、弹粘塑性大变形通用的锻造过程模拟程序。该程序可以与ANSYS实现无缝集成,从而具有了较强的通用性。该软件可以描述多个模具及其运动,能有效地控制加载;不仅可以得到金属流动、应力、应变的变化,而且可以得到载荷力,模具受力等信息,有助于在制定工艺时选择合适设备,评估模具的磨损甚至破坏。多向模锻工艺综合了模锻和挤压工艺的特点,可以制造外形复杂、中空、无飞边锻件。过去,这方面的研究多采用物理实验方法,如采用在铅试样对称面上划网格或做低倍实验等来研究金属的流动情况。由于多向模锻件外形复杂、中空,且在封闭型腔内成形,影响因素较多,金属变形流动过程极为剧烈、复杂,所以这些物理实验方法都存在着一定的局限性,如网格法对于剧烈的变形将失去作用,低倍实验对于复杂的流动也会得不到清晰的金属流线。更重要的是,通过这些实验,只能对变形过程的某一方面进行研究,而得不到对变形全过程的认识;而且由于模具的加工、调试费工费时,需要大量的资金投入。而采用数值模拟方法,可以完全避免这些缺陷,得到整个变
形全过程的各种信息。由于多向模锻的特点,对其工艺过程进行数值模拟具有很大的难度,而且也颇具代表性。由于等径三通的形状特点,其多向模锻挤压成形的工艺过程应为一个三维问题,见图3。为使问题简化,本文采用了平面应变模型,主要分析两正交管轴线所组成对称面上的金属流动及模具受力情况。图4显示的模拟结果表明,在水平冲头先挤入的方案中,当水平冲头挤到打靠位置时,冲头上部的坯料金属会因为较快地向上流动,会脱离开水平冲头,从而在坯料与水平冲头之间形成一个空腔。这一结果与实际吻合得相当好,由于模拟采用了平面简化模型,在空腔的大小上与实际还有一些差别,但模拟结果仍能揭示出该工艺的变形特点。图3等径三通锻件图
图4三通挤压过程的模拟结果在成功开发了二维分析程序的基础上,我们已经开发出了基于ANSYS的三维大变形弹塑性、弹粘塑性程序,可以分析复杂的三维金属塑性成形问题。图5所示为生产大型曲轴TR法镦锻成形工艺的数值模拟结果。通过模拟计算可以有效地确定水平进给速度与垂直进给速度对成形的影响,可以帮助工艺人员确定适宜的速度匹配方案,从而达到优化工艺的目的。
图5曲轴TR法镦锻工艺的模拟结果(等效塑性变形的分布)3热处理过程模拟热处理工序是热加工的最后一道工序,是保证产品内部质量、满足性能要求的关键环节。为保证产品的质量及性能要求,避免产生较大的残余应力,热处理工艺的制定普遍倾向于采用保守一点的方法,所以是耗时较长的工序之一。较长的加热、保温时间会大大增加能源的消耗,也会拖延产品投入市场的时间。如何在保证质量的前提下,缩短热处理加工工时,是改进热处理工艺的一个重要发展方向。经过十年来的大量研究工作,在使用数值模拟技术进行大锻件热处理工艺的分析和优化方面,我们积累了大量的经验和数据。所开发的热处理专用软件NSHT不仅可以分析加热、淬火及回火过程中温度场分布,而且可以给出应力的分布及相态的变化过程。通过数值模拟不仅可以对整个工艺过程有更加深入、全面的认识,而且可以用来对工艺进行优化。我们与一重集团合作,采用NSHT软件对材质为26Cr2Ni4MoV的6MW转子工艺进行了优化。图6是改进前的淬、回火热处理规范。通过对加热、淬火及回火不同方案的模拟计算表明:a淬火规范b回火规范图66MW转子原工艺热处理规范示意图•原工艺方案中,为达到蓄积热量,高速通过奥氏体化相变区的目的而在660°C保温8小时实际上可以取消,改为以适当的加热速度通过相变区,进入保温阶段,可以缩短加热所需要的时间。•原工艺中空水交替冷却,最后油冷可以采用水淬激冷至心部超过珠光体相变区,然后空冷通过贝氏体相变区,操作既方便又能满足应力的要求。•回火过程中加热及保温阶段对回火后的应力影响较大,而冷却阶段的影响较小,因此可以提高出炉温度以节省炉子的时间;回火过程的保温时间有一个最佳时间,保温已基本上没有作用(应力降低很少)。在回火件内外温差要求许可的条件下,可以缩短回火保温时间。根据以上结论对6MW转子的工艺进行了改进,并已在实际生产中取得了成功,不仅缩短了工时、简化了操作,而且性能与应力水平仍能满足要求。这一工艺改进成功表明,采用NSHT能够有效分析热处理工艺的各个环节对锻件内部质量的影响,从而可以使热处理工艺的制定更加合理,达到节省工时,降低成本,提高锻件内部质量的目的。4数值模拟技术在大型锻件生产中应用展望先进制造技术的一个趋势就是将各种技术有效地集成,从而使其发挥更大的效益。从国内大锻件生产行业的应用现状来看,将CAD及CAE结合起来是一条现实而且见效快的途径,即根据某一产品的具体特点开发出一套专用的设计与模拟分析一体化的软件。该软件依靠现有的、成熟的CAD和CAE技术,只是在其基础上进行一些二次开发工作,这样可以避免较高的开发成本。软件只需要由工艺人员输入较少的产品信息数据,就可以完成如生成锻件图,模具图等工作,并且可以自动生成数值模拟所用的输入信息,确定多个工艺方案。然后,自动启动模拟软件进行分析,给出不同工艺条件下的结果及其规律,进而对工艺方案进行优化。我们已经在与第一重型机械集团公司合作研究封头成形的项目中初步实现了上面的设想。由于数值模拟技术在工艺设计方面的突出优点,它必将在生产制造领域中得到广泛应用,这是技术进步的必然结果。在工艺设计中采用模拟技术替代传统的仅凭经验的方式,能够有效地提高生产效率、提高产品质量,这一认识在发达国家已经成为共识。近年来,国外用于分析锻造成形、凝固过程、热处理分析的软件都已进入了商品化阶段,有些已经进入了中国市场。这些软件与国内软件相比,在通用性、易用性等方面具有较大的优势,但价格相当昂贵,而且材料库等只包含欧美等国常用的材料,不适合于中国国情。所以结合国外的一些先进技术,尽快开发出适合于国内企业应用的数值模拟软件是当务之急。但更为重要的是将现有的、成熟的数值模拟技术应用到实际生产当中,这还需要厂校之间加强合作。数值模拟技术在大型锻件生产中的应用摘要数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。在钢锭凝固方面,有限元模拟程序MIPS可以分析凝固过程中温度场的分布,确定不同时刻凝固前沿的位置,而且能预测缩孔和疏松的位置及尺寸。使用该程序对220吨钢锭的生产工艺进行优化,成功地解决了疏松进入锭身的问题。在锻造方面,已开发出了基于ANSYS的三维大变形弹塑性、弹粘塑性程序,可以分析复杂的三维金属塑性成形问题。热处理专用软件NSHT不仅可以分析加热、淬火及回火过程中温度场分布,而且可以给出应力的分布及相态的变化过程,并已在实际生产中取得了成功。刖言大锻件生产具有单件、小批的特点。生产前需要大量的人力和物力准备原材料、模具或辅具,前期投入相当大,一旦产品报废,将造成很大的损失,这对工艺制定的合理性提出了很高的要求。在生产新产品或制定新工艺时,工艺人员往往无法根据经验确定工艺是否合理,只能采用大量实验的方法进行研究。由于大型锻件尺寸较大,不可能进行1:1的实物实验,而小件实验有时会与实际生产过程相差过大。而且物理实验通常只能给出工艺过程某个阶段的结果,无法全面了解整个工艺过程,具有一定的局限性。由于大锻件生产的这些特殊性,采用先进的数值模拟技术改变工艺制定过程中仅凭经验决定的现状是具有重要意义的。1数值模拟技术在现代制造中的地位和作用随着计算机技术的飞速发展,人类社会已经步入了信息时代。计算机及网络不仅改变了人们生活方式,也同样改变了传统机械制造的概念与方法。随着计算机辅助技术(CAX)的广泛应用,计算机已经深入到工业生产的各个环节之中。一个现代的产品制造过程可以由图1来描述。当接到生产任务时,首先采用CAD(ComputerAidedDesign)系统进行产品设计,其设计结果将由CAE(ComputerAidedEngineering)系统对其生产工艺的可行性及合理性进行评估,如果其不满足制造要求或所需要成本太高,将返回到CAD系统中进行重新设计:如果通过了CAE的评估,就将采用CAM(ComputerAidedManufacturing)系统进行实际的生产制造。这一生产模式已在工业发达国家得到了广泛的应用,并且近年来更提出了并行工程技术(ConcurrentEngineering)与虚拟制造技术(VirtualManufacturing)等新概念和新方法,将产品设计、工艺制定、生产制造及管理中的CAD、CAE、CAM、CAPP、MRP等计算机辅助技术,通过先进的信息技术结合起来,从而达到进一步缩短产品设计、制造周期,提高产品质量,降低成本,增强产品竞争能力的目的。但不论哪一种方法,CAD/CAE/CAM等仍是整个计算机辅助技术的核心与基础。
CADCAECAMCADCAECAM图1现代产品制造过程示意图数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或辅具制造之前,在计算机中对工艺的全过程进行分析。不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测可能存在的缺陷;通过改变工艺参数对不同方案进行模拟分析,可以从各方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量,减少材料消耗,提高生产效率,缩短试制周期等方面显示出无可比拟的优越性。在工业发达国家,数值模拟技术已被认为是生产中必不可少的一个环节,目前在国内数值模拟技术也早已走出象牙塔,并已在实际生产中取得了巨大成功。本文所提到的例子,都具有明确的生产背景,是近十多年来我们利用数值模拟方法解决大锻件生产实际问题中较为成功的例子。2数值模拟技术在大型锻件生产中的应用实例从八十年代中期开始,清华大学机械工程系由刘庄教授领导的课题组就一直从事数值模拟技术在大锻件生产上应用的研究,进行了大量有意义的工作。从钢锭浇注、锻件生产及锻后热处理,所进行的研究工作覆盖了大锻件热加工生产的各个环节,完成了可以用于钢锭凝固过程模拟及缺陷预测,锻造过程模拟及工艺优化,淬、回火过程温度及应力场分析的计算程序。通过与各生产厂家的密切合作,这些程序已经在生产中得到了实际应用,计算结果与实际情况相当吻合,充分证明了程序的可靠性。而且利用这些软件已经对很多实际生产工艺进行了优化,取得了显著的经济效益。这些软件可以为大锻件的热加工工艺制定提供一个全面的CAE解决方案,能够有效地提高工艺制定的合理性,提高生产效率。2.1钢锭凝固过程模拟及缺陷预测众所周知,大型锻造用钢锭中一般存在缩孔、疏松、夹杂和偏析等缺陷。这些缺陷的存在会增大材料的消耗,而且可能会影响到后续锻造工序。认识缺陷形成及分布的规律,并进而提出合理的铸锭工艺,对于提高大锻件质量、缩短生产周期、降低材料消耗具有重大意义。从八十年代中期开始,作者与第一重型机器厂合作,对钢锭凝固过程的温度场进行了大量研究,建立了钢锭凝固中传热过程的数学模型。同时对发热剂、保温剂的发热机理进行了深入的探讨,并建立了相应的数学模型。在此基础上开发出一套专用的有限元模拟程序MIPS。MIPS可以分析凝固过程中温度场的分布,确定不同时刻凝固前沿的位置,而且能预测缩孔及疏松的位置及尺寸。使用该程序对一重220吨钢锭的生产工艺所进行的优化,成功地解决了疏松进入锭身的问题。图2显示了工艺改进前后,缩孔及疏松的模拟结果。
(a)原工艺 (b)改进工艺图2220吨钢锭上缩孔疏松缺陷的分布采用MIPS软件并结合正交设计的方法,对钢锭结构等工艺参数对缩孔大小的影响进行了研究,得出了“冒口端部条件对缩孔疏松的影响最显著,其次是侧壁耐火砖的导热系数,再次是锭身锥度,而锭身高径比则影响不大”的结论。这对于工艺人员掌握钢锭生产规律,并优化工艺会有很大的帮助。MIPS软件不仅在普通钢锭的凝固模拟及缺陷预测中取得了成功,而且已成功地应用到无冒口或小冒口钢锭,定向结晶锭以及空心钢锭的研究当中。尤其在定向结晶锭中,通过引入流场,对凝固过程中的传质过程进行了数学描述,从而能够准确地预测出钢锭的偏析情况。在大型钢锭凝固过程中,锭模出现裂纹甚至报废的现象也是不容忽视的。在MIPS软件成功应用的基础上,我们又开发了三维钢锭锭模的应力分析程序,有助于解决这一问题。2.2锻造过程模拟及工艺优化钢锭需要经过锻造才能达到产品所希望的形状,这是大锻件生产
关键的一环,它的成功与否直接影响着整个生产。以前开发的一些程序,由于大多针对某一具体的工艺过程,不具备造型功能,在模具运动或边界条件的施加等方面存在着很大的局限性,通用性比较差。一旦遇到新的问题,通常要对程序作较大的修改,无法满足锻造过程模拟的需要。针对这一问题,我们采用与世界上成熟的商品化软件,如ANSYS相结合的道路,利用ANSYS完善的前、后期处理功能,成功地解决了ANSYS不能进行网格重划的难题,开发出了一套二维和三维的弹塑性、弹粘塑性大变形通用的锻造过程模拟程序。该程序可以与ANSYS实现无缝集成,从而具有了较强的通用性。该软件可以描述多个模具及其运动,能有效地控制加载;不仅可以得到金属流动、应力、应变的变化,而且可以得到载荷力,模具受力等信息,有助于在制定工艺时选择合适设备,评估模具的磨损甚至破坏。多向模锻工艺综合了模锻和挤压工艺的特点,可以制造外形复杂、中空、无飞边锻件。过去,这方面的研究多采用物理实验方法,如采用在铅试样对称面上划网格或做低倍实验等来研究金属的流动情况。由于多向模锻件外形复杂、中空,且在封闭型腔内成形,影响因素较多,金属变形流动过程极为剧烈、复杂,所以这些物理实验方法都存在着一定的局限性,如网格法对于剧烈的变形将失去作用,低倍实验对于复杂的流动也会得不到清晰的金属流线。更重要的是,通过这些实验,只能对变形过程的某一方面进行研究,而得不到对变形全过程的认识;而且由于模具的加工、调试费工费时,需要大量的资金投入。而采用数值模拟方法,可以完全避免这些缺陷,得到整个变
形全过程的各种信息。由于多向模锻的特点,对其工艺过程进行数值模拟具有很大的难度,而且也颇具代表性。由于等径三通的形状特点,其多向模锻挤压成形的工艺过程应为一个三维问题,见图3。为使问题简化,本文采用了平面应变模型,主要分析两正交管轴线所组成对称面上的金属流动及模具受力情况。图4显示的模拟结果表明,在水平冲头先挤入的方案中,当水平冲头挤到打靠位置时,冲头上部的坯料金属会因为较快地向上流动,会脱离开水平冲头,从而在坯料与水平冲头之间形成一个空腔。这一结果与实际吻合得相当好,由于模拟采用了平面简化模型,在空腔的大小上与实际还有一些差别,但模拟结果仍能揭示出该工艺的变形特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工环境影响评估方案
- 施工现场协调与沟通机制方案
- 采矿区地质勘探技术方案
- 工程项目团队建设与沟通方案
- 2026年金华武义县青少年宫招聘活动教师2人笔试参考题库及答案解析
- 工程项目劳务成本控制方案
- 我国高等教育数字化转型的政策特征分析
- 康养视域下乡村景观设计的现状研究
- AI在生物化学医学课程中的个性化学习路径
- 未来五年海水养殖贝类种苗企业县域市场拓展与下沉战略分析研究报告
- GB/T 3372-2010拖拉机和农业、林业机械用轮辋系列
- 北京城市旅游故宫红色中国风PPT模板
- DB42T1319-2021绿色建筑设计与工程验收标准
- 经济学原理 第一章课件
- 安川伺服说明书
- 社会组织管理概论全套ppt课件(完整版)
- 酒精度检测原始记录
- 冷渣机检修工艺
- 建筑风水学培训
- SAP成本月结操作及标准成本估算
- 建筑工程项目全过程造价管理PPT课件
评论
0/150
提交评论