下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.2.下面空心圆柱形物体的左视图是()A. B. C. D.3.把抛物线y=﹣x2向右平移1个单位,再向下平移2个单位,所得抛物线是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣24.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°5.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=6.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定7.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°8.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1 B.3:1 C.2:3 D.3:29.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是()A.4 B.5 C.6 D.710.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.52二、填空题(每小题3分,共24分)11.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).12.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________13.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.14.如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=____________.15.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.16.在中,,则的面积为_________17.如图,在△ABC中,点DE分别在ABAC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.则线段CD的长为______18.如图,是的切线,为切点,连接.若,则=__________.三、解答题(共66分)19.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.20.(6分)如图,在平面直角坐标系中,点的坐标分别是,.(1)将绕点逆时针旋转得到,点,对应点分别是,,请在图中画出,并写出,的坐标;(2)以点为位似中心,将作位似变换且缩小为原来的,在网格内画出一个符合条件的.21.(6分)如图,在平面直角坐标系中,的顶点坐标分别为(每个方格的边长均为个单位长度).(1)将以点为旋转中心,逆时针旋转度得到,请画出;(2)请以点为位似中心,画出的位似三角形,使相似比为.22.(8分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.23.(8分)(1)解方程:(2)已知关于的方程无解,方程的一个根是.①求和的值;②求方程的另一个根.24.(8分)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).25.(10分)某批发商以每件50元的价格购500件恤,若以单价70元销售,预计可售出200件,批发商的销售策略是:第一个月为了增加销售,在单价70元的基础上降价销售,经过市场调查,单价每降低1元,可多售出10件,但最低单价高于购进的价格,每一个月结束后,将剩余的恤一次性亏本清仓销售,清仓时单价为40元.(1)若设第一个月单价降低元,当月出售恤获得的利润为元,清仓剩下恤亏本元,请分别求出、与的函数关系式;(2)从增加销售量的角度看,第一个月批发商降价多少元时,销售完这批恤获得的利润为1000元?26.(10分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选C.考点:二次函数的图象;一次函数的图象.2、A【解析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.3、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】抛物线y=﹣x1向右平移1个单位,得:y=﹣(x﹣1)1;再向下平移1个单位,得:y=﹣(x﹣1)1﹣1.故选:D.【点睛】此题主要考查了二次函数与几何变换,正确记忆平移规律是解题关键.4、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.5、B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=.故选B.点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.6、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.7、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.8、A【分析】根据E,F都在反比例函数的图象上设出E,F的坐标,进而分别得出△CEF的面积以及△OEF的面积,然后即可得出答案.【详解】解:设△CEF的面积为S1,△OEF的面积为S2,过点F作FG⊥BO于点G,EH⊥AO于点H,∴GF∥MC,∴=,∵ME•EH=FN•GF,∴==,设E点坐标为:(x,),则F点坐标为:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故选:A.【点睛】此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键,有一定难度,要求同学们能将所学的知识融会贯通.9、C【分析】根据题意得出摸出黑球的频率,继而根据频数=总数×频率计算即可.【详解】∵小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,∴口袋中黑球的个数可能是10×60%=6个.故选:C.【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.10、C【分析】设平均每天票房的增长率为,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于的一元二次方程.【详解】解:设平均每天票房的增长率为,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每小题3分,共24分)11、乙【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.12、【分析】根据二次函数图像和性质得a0,c=3,即可设出解析式.【详解】解:根据题意可知a0,c=3,故二次函数解析式可以是【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.13、【详解】画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:.14、【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ−AE=.故答案为;.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.15、2【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得r=2cm.考点:圆锥侧面展开扇形与底面圆之间的关系.16、【分析】过点点B作BD⊥AC于D,根据邻补角的定义求出∠BAD=60°,再根据∠BAD的正弦求出AD,然后根据三角形的面积公式列式计算即可得解.【详解】如图,过点B作BD⊥AC交AC延长线于点D,
∵∠BAC=120°,
∴∠BAD=180°-120°=60°,∵,∴,∴△ABC的面积.
故答案为:.【点睛】本题主要考查了运用勾股定理和锐角三角函数的概念解直角三角形问题,作出图形更形象直观.17、【分析】设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出,从而可求出CD的长度.【详解】设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴DE=4,,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴,设AE=2y,AC=3y,∴,∴AD=y,∴,∴CD=2,故填:2.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18、65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.【详解】解:∵是的切线,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案为:65°.【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)根据所给的相似对角线的证明方法证明即可;(2)由题可证的,得到,过点E作,可得出EQ,根据即可求解;【详解】(1)证明:∵,平分,∴,∴.∵,∴.,∴∴是四边形ABCD的“相似对角线”.(2)∵是四边形EFGH的“相似对角线”,∴三角形EFH与三角形HFG相似.又,∴,∴,∴.过点E作,垂足为.则.∵,∴,∴,∴,∴.【点睛】本题主要考查了四边形综合知识点,涉及了相似三角形,解直角三角形等知识,准确分析并能灵活运用相关知识是解题的关键.20、(1)见解析,,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;
(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【详解】解:(1)如图,为所作,,(2)如图,为所作图形.【点睛】本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.21、(1)见详解;(2)见详解.【分析】(1)根据旋转的规律,将点A、B围绕O逆时针旋转90°,得到A1、B1,连接O、A1、B1即可;
(2)连接OA并延长到A2,使OA2=2OA,连接OB并延长到B2,使OB2=2OB,然后顺次连接O、A2、B2即可;【详解】解:(1)如图,△OA1B1即为所求作三角形;(2)如图,△OA2B2即为所求作三角形;【点睛】本题考查了利用位似变换作图,坐标位置的确定,熟练掌握网格结构以及平面直角坐标系的知识是解题的关键.22、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【详解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:∵△MAD的面积与△CAD的面积相等,且它们是等底三角形∴点M的纵坐标绝对值跟点C的纵坐标绝对值相等∵点C的纵坐标绝对值为:∴点M的纵坐标绝对值为:∴点M的纵坐标为:当点M的纵坐标为时,则解得:或(即点C,舍去)∴点的坐标为:当点M的纵坐标为时,则解得:∴点的坐标为:,点的坐标为:∴点M的坐标为:或或;(3)存在,分两种情况:①如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(-2,0).②如图,当BC为梯形的腰时,过点C作CP//AB,与抛物线交于点P,∵点C,B关于抛物线对称,∴B(2,-3)设直线AB的解析式为,则,解得.∴直线AB的解析式为.∵CP//AB,∴可设直线CP的解析式为.∵点C在直线CP上,∴.∴直线CP的解析式为.联立,解得,∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.23、(1),;(2)①,,②另一个根是1.【分析】(1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m的值,然后将m代入一元二次方程中求出k的值即可;②根据根与系数的关系可求出另一个根.【详解】(1)原方程可化为或解得:,(2)①解:将分式方程两边同时,得到,解得∵分式方程无解,,把代入方程,得求得②根据一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古玩定金合同范本
- 住房修建合同范本
- 包装产品设计合同三篇
- 独立中介合同范本
- 采购合同范本全文
- 广告经营合同范本
- 隧道劳务合同范本
- 铲车的合同范本
- 公寓合租合同范本
- 2024至2030年中国鸭里脊数据监测研究报告
- 第五节 错觉课件
- 2024-2030年中国水煤浆行业发展规模及投资可行性分析报告
- 2024-2030年陕西省煤炭行业市场发展分析及发展前景预测研究报告
- 【课件】Unit+3+SectionB+1a-2b+课件人教版英语七年级上册
- 干部人事档案任前审核登记表范表
- 期中阶段测试卷(六)-2024-2025学年语文三年级上册统编版
- 北京市昌平区2023-2024学年高二上学期期末质量抽测试题 政治 含答案
- 第7课《不甘屈辱奋勇抗争》(第2课时)(教学设计)-部编版道德与法治五年级下册
- 中国脑出血诊治指南
- 2024-2030年中国融资租赁行业市场发展分析及前景趋势与投资前景研究报告
- 吉安市市直事业单位选调工作人员真题
评论
0/150
提交评论