贵州省安顺市名校2022-2023学年数学九上期末检测试题含解析_第1页
贵州省安顺市名校2022-2023学年数学九上期末检测试题含解析_第2页
贵州省安顺市名校2022-2023学年数学九上期末检测试题含解析_第3页
贵州省安顺市名校2022-2023学年数学九上期末检测试题含解析_第4页
贵州省安顺市名校2022-2023学年数学九上期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在,,,则的值是()A. B. C. D.2.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.3.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠04.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.55.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°6.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为(

)A.80º B.60º C.40º D.50º7.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点8.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x="1".其中正确的有A.1个 B.2个 C.3个 D.4个9.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.10.如图,在平面直角坐标系xOy中,二次函数的图象经过点A,B,对系数和判断正确的是()A. B. C. D.11.已知△ABC∽△A'B'C,AB=8,A'B'=6,则△ABC与△A'B'C的周长之比为()A. B. C. D.12.若扇形的半径为2,圆心角为,则这个扇形的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.方程2x2﹣6=0的解是_____.14.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.15.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.16.若二次函数(为常数)的最大值为3,则的值为________.17.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.18.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.三、解答题(共78分)19.(8分)汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:),表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.20.(8分)计算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°21.(8分)如图,在平面直角坐标系中,抛物线经过点,交轴于点.(1)求抛物线的解析式.(2)点是线段上一动点,过点作垂直于轴于点,交抛物线于点,求线段的长度最大值.22.(10分)今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?23.(10分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)24.(10分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.25.(12分)解方程:-2(x+1)=326.如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【详解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故选B.【点睛】本题考查互余两角三角函数的关系.2、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.3、A【解析】解:∵关于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故选A.4、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.5、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.6、C【解析】∵AB是⊙O的直径,∴∠C=90°,∵∠B=50°,∴∠A=90°-∠B=40°.故选C.7、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.

B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.

C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.

D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.

故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.8、B【解析】试题分析:∵当y1=y2时,即时,解得:x=0或x=2,∴由函数图象可以得出当x>2时,y2>y1;当0<x<2时,y1>y2;当x<0时,y2>y1.∴①错误.∵当x<0时,-直线的值都随x的增大而增大,∴当x<0时,x值越大,M值越大.∴②正确.∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).∴使得M=2的x值是1或.∴④错误.综上所述,正确的有②③2个.故选B.9、C【解析】如图,连接BP,由反比例函数的对称性质以及三角形中位线定理可得OQ=BP,再根据OQ的最大值从而可确定出BP长的最大值,由题意可知当BP过圆心C时,BP最长,过B作BD⊥x轴于D,继而根据正比例函数的性质以及勾股定理可求得点B坐标,再根据点B在反比例函数y=(k>0)的图象上,利用待定系数法即可求出k的值.【详解】如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(-)=,故选C.【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP过点C时OQ有最大值是解题的关键.10、D【分析】根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax2+bx+1可知图象经过点(0,1),

∵二次函数y=ax2+bx+1的图象还经过点A,B,

则函数图象如图所示,

抛物线开口向下,∴a<0,,又对称轴在y轴右侧,即,∴b>0,故选D11、C【分析】直接利用相似三角形的性质周长比等于相似比,进而得出答案.【详解】解:∵△ABC∽△A'B'C,AB=8,A'B'=6,∴△ABC与△A'B'C的周长之比为:8:6=4:1.故选:C.【点睛】本题主要考查了相似三角形的性质,正确得出相似比是解题关键.12、B【分析】直接利用扇形的面积公式计算.【详解】这个扇形的面积:.故选:B.【点睛】本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是,圆的半径为R的扇形面积为S,则或(其中为扇形的弧长).二、填空题(每题4分,共24分)13、x1=,x2=﹣【解析】此题通过移项,然后利用直接开平方法解方程即可.【详解】方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣【点睛】此题主要考查了一元二次方程的解法—直接开平方法,比较简单.14、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.15、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.16、-1【分析】根据二次函数的最大值公式列出方程计算即可得解.【详解】由题意得,,

整理得,,

解得:,

∵二次函数有最大值,

∴,

∴.

故答案为:.【点睛】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.17、(,2).【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.18、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且三、解答题(共78分)19、(1)见解析;(2)和;(3)预计水位达到.【分析】根据描点的趋势,猜测函数类型,发现当时,与可能是一次函数关系:当时,与就不是一次函数关系:通过观察数据发现与的关系最符合反比例函数.【详解】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当时,与可能是一次函数关系:设,把,代入得,解得:,,与的关系式为:,经验证,,都满足,因此放水前与的关系式为:,观察图象当时,与就不是一次函数关系:通过观察数据发现:.因此放水后与的关系最符合反比例函数,关系式为:,所以开闸放水前和放水后最符合表中数据的函数解析式为:和.(3)当时,,解得:,因此预计水位达到.【点睛】此题考查二元一次函数的应用,统计图,解题关键在于根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.20、(1)0;(2)【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.【详解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.21、(1);(2)4.【分析】(1)根据A、B坐标可得抛物线两点式解析式,化为一般形式即可;(2)根据抛物线解析式可得C点坐标,利用待定系数法可得直线AC的解析式为y=-x+4,设点坐标为,则,用m表示出DF的长,配方为二次函数顶点式的形式,根据二次函数的性质求出DF的最大值即可.【详解】(1)∵拋物线经过点,∴∴拋物线的解析式为.(2)∵拋物线的解析式为,∴,设直线的解析式为y=kx+b,∴,∴,b=4,∴直线AC的解析式为设点坐标为,则∴=-(m-2)2+4,∴当m=2时,DF的最大值为4.【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练掌握二次函数解析式的三种形式及二次函数的性质是解题关键.22、(1)7头;(2)会超过1500头【分析】(1)设每头发病生猪平均每天传染x头生猪,根据“第一天发现3头生猪发病,两天后发现共有192头生猪发病”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;

(2)根据3天后生猪发病头数=2天后生猪发病头数×(1+7),即可求出3天后生猪发病头数,再将其与1500进行比较即可得出结论.【详解】解:(1)设每头发病生猪平均每天传染头生猪,依题意,得,解得:,(不合题意,舍去).答:每头发病生猪平均每天传染7头生猪.(2)(头,.答:若疫情得不到有效控制,3天后生猪发病头数会超过1500头.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、(1)见详解;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.理由见详解【分析】(1)根据三角形的中位线定理可证得DE∥GF,DE=GF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【详解】(1)∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.连接AO,由(1)得四边形DEFG是平行四边形,∵点D,G,F分别是AB,OB,OC的中点,∴,,当AO=BC时,GF=DF,∴四边形DGFE是菱形.【点睛】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论