版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
视觉引导的装配机器人平面定位补偿方法沈程慧;白瑞林;李新【摘要】为了提高选择顺应性装配机器手臂(SCARA)机器人平面定位的精度,采用网格模型结合最小距离误差逼近的方法,首先构建SCARA机器人平面定位的简化模型,概述网格模型构建原理,然后通过视觉采集机器人末端第1次到达的实际点与期望点相对位置关系,构建可变参量的起始网格模型,再采用最小距离误差逼近,求解下一步构建可变参量网格模型起始点,最后由期望点在网格模型中位置分布情况决定模型粒度点的收敛更新方向结果表明,视觉弓I导的定位补偿策略弥补了因模型不精准而造成的平面定位精度不高的现象;空间插值补偿法定位精度为1mm~3mm,平面定位补偿精度较之有较大提高.该方法调节的参量单一、机器末端移动次数明确、工业应用性强.%Inordertoimprovetheplanepositioningaccuracyofselectivecomplianceassemblyrobotarm(SCARA)robot,themethodcombinedcompensationstrategybasedongridmodelandtheminimumerrorapproximationprinciplewasproposed.Firstly,asimplifiedmodelforSCARArobotwasestablishedandgridmodelprinciplewassummarized.Secondly,aninitialgridmodelwasconstructedbyanalyzingthelocationrelationshipbetweenthefirst-timereachedactualpointandthedesiredpoint.Thestartingpointofthevariableparametergridmodelinthenextstepwasconstructedbyusingtheminimumdistanceerrorapproximationmethod.Finally,theconvergenceandupdatedirectionweredeterminedbythelocationofthedesiredpointingridmodel.Theresultsshowthatthepositioningcompensationstrategyofvisualguidancemakesupthephenomenonthattheplanepositioningaccuracyisnothighbecauseoftheinaccuracyofthemodel.Theaccuracyofthepositioningcompensationstrategyismuchbetterthan1mm~3mmofthespatialinterpolationcompensationmethod.Theproposedmethodhasbriefparameterregulation,clearlymobiletimesandstrongindustrialapplication.【期刊名称】《激光技术》【年(卷),期】2017(041)001【总页数】6页(P79-84)【关键词】信息光学;视觉引导;SCARA机器人;网格模型;最小距离误差逼近;平面定位精度【作者】沈程慧;白瑞林;李新【作者单位】江南大学轻工过程先进控制教育部重点实验室,无锡214122;江南大学轻工过程先进控制教育部重点实验室,无锡214122;无锡信捷电气股份有限公司,无锡214072【正文语种】中文【中图分类】O438;TP242随着视觉技术的进步,机器人视觉伺服有了较大的发展,视觉伺月艮应用于选择顺应性装配机器手臂(selectivecomplianceassemblyrobotarm,SCARA)的研究备受关注。而高质量装配的前提是高精度的定位。当前决定机器人性能指标分别是:机器人的重复定位精度、系统的绝对定位精度。许多SCARA机器人本体重复定位精度为20pm左右,但系统的绝对定位精度一般为1mm~3mm。SCARA机器人模型的不精准会影响其平面定位精度,而SCARA机器人1轴和2轴的强耦合串联机械结构与平面定位精度直接相关。现有提高SCARA机器人平面绝对定位精度方法也称为机器人标定。机器人标定可以分为机器人运动学标定[1-4]和机器人非运动学标定[5]。运动学标定一般分为4个步骤:建模、测量[6-8]、参量辨识和误差补偿[9]。传统的运动学标定侧重建立复杂的运动学模型并注重模型几何参量改变带来的影响。对运动学标定的误差补偿关注较少,误差补偿即当辨识出运动学参量后,需要附加一定的控制算法或者修改机器人原有的控制系统参量来提高机器人的绝对定位精度。传统误差补偿方法可以分为如下几类:基于神经网络补偿法、基于插补思想补偿法、微分误差补偿法、关节空间补偿法。针对以上问题,本文中提出一种新的机器人精确定位补偿方法,该方法运用基于网格模型原理结合最小距离误差逼近原则提高SCARA机器平面绝对定位精度,并将补偿效果与数据进行了细化的分析,发现此方法很大程度上弥补了因模型不精准而造成的平面定位精度不高的现象。SCARA机器人的系统定位精度直观上表现为1轴和2轴平面定位精度与3轴确定的垂直定位精度的总和。SCARA机器人的1轴和2轴具有强耦合性,3轴和4轴分别确定机器人的垂直定位精度和旋转定位精度。在分析机器人的平面定位精度补偿时,只需考虑1轴和2轴的共同作用。SCARA机器人机械结构如图1所示。图中&(i=123,4)代表SCARA机器人第i轴的旋转角度;11,12代表决定SCARA机器人平面定位的第1轴和第2轴的轴长;ri(i=1,234)代表SCARA机器人的每个轴的坐标系。SCARA机器人在平面上的定位取决于1轴。1、2轴02的共同作用,定位精度的控制量是关节角度(01,02):式中,m,n为系数,△LAZ为电机1、电机2的指令单位关节度数。SCARA机器人平面定位简化模型如图2所示。SCARA机器人通过视觉传感器得到期望点的笛卡尔空间坐标,通过运动学正解求得关节空间角度:同样易知:式中,J是雅克比矩阵。由图2可知,SCARA机器人正运动学的表达式为:且由:对比(3)式、(5)式得到雅克比矩阵:〗2.1网格模型原理传统的网格模型构建把机器人末端工作区域按照指定步长划分成正交网格线组成的平面。网格的构建并没有考虑电机的运动特性,在微小距离的驱动过程中不能明确电机的移动增量,且平面的定位精度与设定的网格步长紧密相关。改进后的网格模型从机器人关节空间构建模型,由粒度点、重复定位精度、电机指令单位关节度数三部分组成。网格模型有4个粒度点,每个粒度点代表机器人末端关节空间位置点,即网格的每个端点是真正意义上可达的。由于重复定位精度的影响,机器人重复多次到达同一个粒度点,多次到达的实际点分布情况会形成以粒度点为圆心的一个近似圆,圆的半径为重复定位精度。每个粒度点之间关节空间的间距分别是k^1或kA2,k是一个可以设定的整数笊=12..小)。且每个设置的粒度点同时也是以此SCARA机器人的重复定位精度为半径的近似圆的圆心点,其网格模型结构如图3所示。图3中Ei代表机器人末端进入到的圆形区域范围,Pi代表设置的粒度点,Di代表Ei的半径,Di的大小为机器人的重复定位精度,1<i<4,Q是由P1,P2,P33点确定的外接圆圆心,P0是期望点,S1代表粒度点P1运动到点的方向矢量;S2代表粒度点P2运动到P4点的方向矢量。根据(5)式可知:通过视觉传感器得到期望点图像坐标,由坐标变换得到期望点的笛卡尔坐标P0(x0,y0),再通过相应的坐标变换得到期望点的关节空间坐标PO(01/O/02,O),驱动机器人前往期望点,分析机器人末端第1次到达的实际位置点P1(x0',y0')与期望点P0(x0,y0)位置的距离偏差,构建改进后的起始网格模型,使期望点处于构建的网格模型区域内,各粒度点的关节空间位置分别为:P1(eiR2)简写为P1;P2(01+kA1,02)简写为P2;P3(01,02+kA2)简写为P3;P4(01+kA1,02+kA2)简写为P4。由于模型粒度点在关节空间之间间距分别是kA1或k^2,这样构建的网格模型在关节空间中呈现的是一个矩形形状。而在笛卡尔空间中呈现的是一个近似矩形的平行四边形。驱动机器人第1次运动指令的关节度数为P0(01/0/02/0),由于相机坐标与机器人坐标转换过程中的误差累计,实际机器人的末端位置P1(x0',y0')与期望点P0(x0,y0)有距离偏差,但是P1(x0',y0')的关节空间坐标位置P1(e1,02)就是P0(x0,y0)推导出的关节控制位置P0(01/0/02/0),因此把P1(e1,02)设定为网格模型的起始点。机器人运动到起始目标关节位置后,计算各设定的粒度点与期望点距离误差,选择距离误差最小值的粒度点作为驱动机器人从起始目标关节运动到下一个关节位置点。2.2基于网格模型SCARA机器人精准定位补偿策略分析第1次机器人末端到达实际位置点与期望点的坐标位置关系,为了保证期望点处于构建的网格模型区域范围内,且构建网格模型的粒度点之间的间距符合1mm~3mm的机器人平面绝对定位精度指标,取k=16。其补偿策略演示图如图4所示。2.2.1—般情况下的具体步骤(1)求最大距离误差的最小值。机器人末端到达P1点后,计算E1,E2,E3,E4与P0的距离误差,并选择最小距离误差的粒度点为下一次移动选择点,公式如下:式中,百(P0)(1<i<20)代表期望点与机器人末端进入到的圆形区域Ei之间最大距离误差的最小值;d(P0;Pi)代表P0与设置的粒度点Pi两点之间的距离;rad(Di)代表圆形区域Ei的半径Di,通过结果对比得到£i(P0)的最小值。确定粒度点的收敛方向。得出最小£i(P0)代表的粒度点的关节空间位置,与机器人实际末端关节位置对比分析,沿着设定的网格模型网格边线的运动矢量驱动机器人运动。若计算的结果表明粒度点P2离期望点的距离最近,机器人末端运动则由P1点移动到P2点,其运动方向与矢量S1的方向一致。若当期望点P0与构建的网格模型4个粒度点之间的距离依然是机器人末端实际位置点最小,保持机器人末端位置不动,以此时机器人末端的粒度点作为下一步构建网格模型的起始点。调整粒度点之间的间距大小。若步骤(1)计算得到粒度点P2离期望点P0的距离误差最小,选择P2作为网格模型的起始点,调整起始网格模型粒度点间距大小。由于构建网格模型的粒度点间距在关节空间与笛卡尔空间中存在着等比列缩放映射关系,在笛卡尔空间中,水平方向按照矢量S1大小选取||S1||/2,在竖直方向按照矢量S2大小选取||S2||/2缩小间距,则在关节空间中粒度点的间距按照此前粒度点间距的一半构建模型。循环查找最小距离粒度点。重复上述步骤(1)~步骤(3)4次,直到最后一次构建的网格模型相邻粒度点关节空间的间距,在轴1上只相差一个指令单位关节度数△1,在轴2上只相差一个指令单位关节度数^2。再重复步骤(1)最后一次,计算得到的最小距离误差的粒度点,并驱动机器人到达此点。对单一固定期望点多次重复上述步骤(1)~步骤(4),记录机器末端分别在1轴和2轴累计偏移量,求取其平均值作为补偿量修改其原有控制系统的参量,从而提高系统的平面定位精度。2.2.2特殊情况下的具体步骤在上述方法中,可能会出现两种特殊的情况:(1)当期望点P0处于由3个粒度P1,P3,P4组成外接圆的圆心Q处;(2)当期望点P0处于构建的网格模型类似矩形的平行四边形中心。这两种情况都不能再按照上述的方法进行构建模型,而是要做适当的调整。当期望点P0处于由3个粒度点P1,P3,P4组成外接圆圆心Q处,如图5所示。由于||P0-P1||=||P0-P3||=||P0-P4||,此时会牵扯出一个最短行程问题:由P2点在P1,P3,P4中确定下一个粒度点时,与P2最短距离的粒度点才是实际被选择点。如图5可知,P2-P1和P2-P4的距离取决于平行四边形的边长长度,即运动矢量S1,S2模的大小所决定。并且很容易知道P2-P1的距离远比P2-P1-P3的距离小。期望点P0处于确定的网格模型在笛卡尔空间组成的平行四边形的对角线交点处时,如图6所示。为了保证精度,此时一般情况下的步骤(2)不能采用,要做适当的改进。构建网格模型的粒度点在关节空间中间距大小为此前模型粒度点间距的3/4倍。搭建的实验平台如图7所示,相机1获取坐标位置,相机2记录末端移动轨迹,部件3是SCARA机器人本体结构。SCARA机器人的物理参量如下:l1=500mm;l2=500mm;01=n/3;02=n/6;k=16;A1=0.01°=n/1800;A2=0.01°=n/1800。对于给定的起始目标关节位置,由视觉传感器得到的3组期望点的坐标分别是:x0=247.8500mm;y0=933.4200mm;(2)x0=248.4800mm;y0=933.0750mm;⑶x0=249.8500mm;y0=933.0300mm。其仿真结果分别如图8所示。图8a~图8c分别表示SCARA机器人3个不同期望点位置在采用本文中方法的最终补偿策略效果图。由图8可知,本方法能保证处于起始网格模型区域范围内的期望点最终皆收敛于以一个指令单位步长为间距的网格模型中,且在模型粒度点间距较大时实现了快速收敛,在模型粒度点间距较小时精准定位。图9a~图9c分别表示选择的粒度点在x,y轴上变化曲线。整体上粒度点x,y轴坐标的变化趋势是越来越接近期望点的坐标。当模型粒度点间距较小时,其重复定位精度对最大距离误差的最小值计算影响较大,多次针对同一个期望点,寻找最后一次构建的网格模型实际被选择的粒度点坐标位置会出现一定的变化。表1中的3组数据分别表示在不同期望点坐标下步骤(1)确定的粒度点坐标以及最后的最小距离误差。其中a组数据的第(2)步~第(3)步的数据变化表明,机器末端只在竖直方向发生了变化,水平方向保持不变;而第(3)步~第(4)步的数据变化表明,机器末端在水平和竖直方向均发生移动;c组数据前3步的坐标数据一样,表明前3次构建的网格模型,此点位置均是离期望点最近粒度点位置。均符合步骤(2)设定的粒度点收敛方向。由图10b和图10e中的机器末端与图10a中期望点的距离大小明显可以发现,采用补偿后的机器末端离期望点的距离较未补偿之前的距离近。通过对表2中的数据分析可以得知,补偿后机械末端离期望点的距离较补偿前更近,最后的粒度点与期望点的平均绝对定位误差为0.081mm,较现有的SCARA机器人绝对定位精度有较大提高,再次证明了方法的有效性。针对SCARA机器人平面定位精度低的现象,提出了一种SCARA机器人平面定位误差补偿方法。通过在关节空间中构建网格模型并结合最小距离误差逼近,循环查找网格模型中最小距离粒度点,依次驱动机器人末端运动。实验结果表明,此方法只需要知道SCARA机器人平面定位简化模型,弥补了模型不精准的影响,不改变SCARA机器人本体的重复定位精度、但却能提高绝对定位精度,且在绝对定位误差大的情况下实现快速收敛,在绝对定位误差小的情况下实现精准的定位。但是该方法的缺陷是最后走点的位置只是最接近期望点的位置,而不直接是期望点的位置。在空载情况下,其重复定位精度只对最后一步影响较大,缺少对负载情况下的深入探讨,下一步的工作重心将在研究负载情况下的重复定位精度对模型平面定位精度的影响。GINANIL,MOTTAJ.Theoreticalandpracticalaspectsofrobotcalibrationwithexperimentalverification[J].BrazilianSocietyofMechanicalSciencesandEngineering,2011,8(4):15-21.NUBIOIAA,BONEVIA.AbsolutecalibrationofanABBIRB1600robotusingalasertracker[J].RoboticsandComputer—IntegratedManufacturing,2013,29(1):236-245.ZHAOYM,LINY,XIF,etal.Calibration-basediterativelearningcontrolforpathtrackingofindustrialrobots[J].IEEETransactionsonIndustrialElectronics,2015,62(5):2921-2929.ZHENHW,HUIX,GUODC,etal.Adistanceerrorbasedindustrialrobotkinematiccalibrationmethod[J].IndustrialRobot:AnInternationalJournal,2014,41(5):439-446.JOUBAIRA,BONEVIA.Non-kinematiccalibrationofasix-axisserialrobotusingplanarconstraints[J].PrecisionEngineering,2015,40:325-333.WUB,SUXY.Apreciseguidingmethodforautomaticmeasurementwithvisualguidingtheodolites[J].LaserTechnology,2015,39(4):453-457(inChinese).CHENML.Erroranalysisofthreadmeasurementwithmachinevision[J].LaserTechnology,2014,38(1):109-113(inChinese).ZHANGHH,LIY,ZHANGHY,etal.CalibrationofPMPsystemusingvirtualplanes[J].LaserTechnology,2010,34(5):600-602(inChinese).XUACh,CHENJB,ZHANGPM,etal.Ocularaberrationsmeasurementmethodcombinedwithsubjectivevisualcompensation[J].LaserTechnology,2010,34(6):774-777(inChinese).ZHOUW,LIAOWH,TIANW,etal.Robotaccuracycompensationmethodofspatialgridforaircraftautomaticassembly[J].ChinaMechanicalEngineeri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某高中副校长在11月升旗活动上的讲话
- 2023年中考地理模拟卷(四)
- 湛江-PEP-2024年10版小学三年级下册英语第5单元寒假试卷
- 《管理学原理》期末考试复习题库(含答案)
- 骨盆骨折护理常规
- 云南省大理市2024-2025学年高三年级上册规模化统一检测地理试题(含答案)
- 2023年群路密码机系列投资申请报告
- 2024年密封垫及类似接合衬垫项目资金筹措计划书代可行性研究报告
- 强化财政投融资体制促进积极财政政策的实施
- 耐高温自润滑聚酰亚胺复合材料
- 妇产科急诊及急救PPT课件
- 仪陇县先锋镇小学校迎国检应急预案
- 断裂力学与断裂韧性
- XX理工大学“高等教育质量监测国家数据平台”数据采集工作实施办法
- 江苏生产性服务业现状、问题及对策分析
- 焊接方法代号(数字+字母)
- 浅谈从阅读、生活、作文中积累语言
- 苏少版音乐二年级上册《都睡着了》教案
- 简洁卡通生日快乐贺卡模板
- 电磁辐射计算
- 小学六年级语文培优补差活动记录(共22页)
评论
0/150
提交评论