广西北海市银海区2022年九年级数学第一学期期末学业质量监测试题含解析_第1页
广西北海市银海区2022年九年级数学第一学期期末学业质量监测试题含解析_第2页
广西北海市银海区2022年九年级数学第一学期期末学业质量监测试题含解析_第3页
广西北海市银海区2022年九年级数学第一学期期末学业质量监测试题含解析_第4页
广西北海市银海区2022年九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在中,,若,则的值为()A. B. C. D.2.如图,,,,四点都在上,,则的度数为()A. B. C. D.3.如图,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则∠A的度数为()A.60° B.70° C.50° D.45°4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°5.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球 B.2个黑球1个白球C.2个白球1个黑球 D.至少有1个黑球6.如图,空地上(空地足够大)有一段长为10m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m1.若设AD=xm,则可列方程()A.(60﹣)x=900 B.(60﹣x)x=900 C.(50﹣x)x=900 D.(40﹣x)x=9007.下列四个点中,在反比例函数的图象上的是()A.(3,﹣2) B.(3,2) C.(2,3) D.(﹣2,﹣3)8.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是()A.4π B.1π C.π D.2π9.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠310.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形二、填空题(每小题3分,共24分)11.化简:=______.12.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.13.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.14.已知2是关于的一元二次方程的一个根,则该方程的另一个根是________.15.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.16.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).17.已知点是线段的一个黄金分割点,且,,那么__________.18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.三、解答题(共66分)19.(10分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.(1)如图1,DN交AB的延长线于点F.求证:;(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.20.(6分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.21.(6分)已知:如图,是正方形的对角线上的两点,且.求证:四边形是菱形.22.(8分)将矩形如图放置在平面直角坐标系中,为边上的一个动点,过点作交边于点,且,的长是方程的两个实数根,且.(1)设,,求与的函数关系(不求的取值范围);(2)当为的中点时,求直线的解析式;(3)在(2)的条件下,平面内是否存在点,使得以,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.23.(8分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)24.(8分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?25.(10分)如图,在中,,,,求和的长.26.(10分)已知抛物线经过点,,与轴交于点.(1)求这条抛物线的解析式;(2)如图,点是第三象限内抛物线上的一个动点,求四边形面积的最大值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据特殊角的三角函数值求出∠B,再求∠A,即可求解.【详解】在中,,若,则∠B=30°故∠A=60°,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.2、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=−∠A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.3、A【分析】根据圆内接四边形的性质,构建方程解决问题即可.【详解】设∠BAD=x,则∠BOD=2x,∵∠BCD=∠BOD=2x,∠BAD+∠BCD=180°,∴3x=180°,∴x=60°,∴∠BAD=60°.故选:A.【点睛】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题.4、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.5、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选D.【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.6、B【分析】若AD=xm,则AB=(60−x)m,根据矩形面积公式列出方程.【详解】解:AD=xm,则AB=(100+10)÷1−x=(60−x)m,由题意,得(60−x)x=2.故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、A【分析】根据点在曲线上点的坐标满足方程的关系,将各点坐标代入验算,满足的点即为所求【详解】点(3,﹣2)满足,符合题意,点(3,2)不满足,不符合题意,点(2,3)不满足,不符合题意,点(﹣2,﹣3)不满足,不符合题意故选A.8、B【分析】根据圆锥的侧面积,代入数进行计算即可.【详解】解:圆锥的侧面积2π×1×1=1π.故选:B.【点睛】本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.9、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.10、A【解析】根据特殊四边形的判定方法进行判断.对角线相等的平行四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形是菱形;对角线互相垂直且相等的平行四边形是正方形二、填空题(每小题3分,共24分)11、.【解析】试题解析:原式故答案为12、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.13、1【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】∵点A(-3,m)与点A′(n,2)关于原点中心对称,∴n=3,m=-2,∴m+n=1,故答案为1.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.14、-1.【解析】设方程的另一个根为,由韦达定理可得:,即,解得.点睛:本题主要考查一元二次方程根与系数的关系,解决本题的关键是要熟练掌握一元二次方程根与系数的关系.15、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.16、300+100【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.【详解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案为:300+100.【点睛】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题17、【分析】根据黄金分割的概念得到,把代入计算即可.【详解】∵P是线段AB的黄金分割点,∴故答案为.【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.18、20%.【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.三、解答题(共66分)19、(1)证明见解析;(2);(3)是等腰直角三角形,理由见解析【分析】(1)连接BD,根据正方形的性质可证出,得到,即可得到结果;(2)根据正方形ABCD,可得到,,可推出,得到,于是推出,得到,进而得出,代入已知条件即可;(3)由已知条件证出,可得,再根据,得到,所以,代入条件可求得结果.【详解】解:(1)连接BD∵四边形ABCD是正方形∴∴又∵∴又∵∴∴∴(2)∵正方形ABCD∴,又∵∴又∵,∴∴∴∴∴又∵∴∴故答案为:(3)是等腰直角三角形,理由如下:由,,∴又∵∴∴又∵∴∴是等腰直角三角形【点睛】本题主要考查了正方形的综合应用,结合相似三角形的性质应用进行题目解答,找到每个量之间的关系关键.20、(1)详见解析;(2);(3)【分析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD=90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM=60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,根据OM=OE=1,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°;(3)解:连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,∵的半径为1∴OM=OE=1,∴FM=,OF=,∴EF=1−故EM==.【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.21、见解析【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.22、(1);(2)或;(3)存在.,,.【分析】(1)利用因式分解法解出一元二次方程,得到OA、OB的长,证明△AOE∽△ECD,根据相似三角形的性质列出比例式,整理得到y与x的函数关系;(2)列方程求出OE,利用待定系数法求出直线AE的解析式;(3)根据平行四边形的性质、坐标与图形性质解答.【详解】(1),,∴解得,.∵,∴,.∵,∴∠AEO+∠DEC=90,又∵∠AEO+∠OAE=90,∴∠OAE=∠CED,又∠AOE=∠ECD=90,∴,∴,∴,∴.(2)当为的中点时,.∵,∴.解得,.当时,设直线的解析式为,把A(0,8),E(4,0)代入得解得,∴;当时,设直线的解析式为,把A(0,8),E(8,0)代入得解得,∴直线的解析式为或.(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).【点睛】本题考查的是一次函数的性质、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.23、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作于点,由题意知,则,∴.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.24、(1)见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论