天津市河西区新华圣功学校2022年数学九上期末质量检测模拟试题含解析_第1页
天津市河西区新华圣功学校2022年数学九上期末质量检测模拟试题含解析_第2页
天津市河西区新华圣功学校2022年数学九上期末质量检测模拟试题含解析_第3页
天津市河西区新华圣功学校2022年数学九上期末质量检测模拟试题含解析_第4页
天津市河西区新华圣功学校2022年数学九上期末质量检测模拟试题含解析_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则2.下列约分正确的是()A. B. C. D.3.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.4.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A.2 B.3 C.4 D.65.如图,直线,等腰的直角顶点在上,顶点在上,若,则()A.31° B.45° C.30° D.59°6.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和7.下列二次根式中,与是同类二次根式的是A. B. C. D.8.代数式有意义的条件是()A. B. C. D.9.在Rt△ABC中,∠C=90°,若,则∠B的度数是()A.30° B.45° C.60° D.75°10.如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50° B.60° C.70° D.80°11.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.12.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.二、填空题(每题4分,共24分)13.下列投影或利用投影现象中,________是平行投影,________是中心投影.(填序号)14.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).16.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab的值是____________.17.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.18.一中和二中举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:学校参赛人数平均数中位数方差一中45838682二中458384135某同学分析上表后得到如下结论:.①一中和二中学生的平均成绩相同;②一中优秀的人数多于二中优秀的人数(竞赛得分85分为优秀);③二中成绩的波动比一中小.上述结论中正确的是___________.(填写所有正确结论的序号)三、解答题(共78分)19.(8分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.20.(8分)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.21.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.(10分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.23.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.24.(10分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=时,求的长(结果保留);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.25.(12分)我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如=3+.这种方法我们称为“分离常数法”.(1)如果=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=的图象是由哪个反比例函数的图象经过怎样的变换得到?26.解方程:.

参考答案一、选择题(每题4分,共48分)1、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【点睛】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.2、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.3、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.4、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.5、A【分析】过点B作BD//l1,,再由平行线的性质即可得出结论.【详解】解:过点B作BD//l1,则∠α=∠CBD.

∵,

∴BD//,

∴∠β=∠DBA,

∵∠CBD+∠DBA=45°,

∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.

故选A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.6、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.7、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.8、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.9、C【分析】根据特殊角的函数值可得∠A度数,进一步利用两个锐角互余求得∠B度数.【详解】解:∵,

∴∠A=30°,∵∠C=90°,

∴∠B=90°-∠A=60°故选:C.【点睛】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.10、A【解析】考点:旋转的性质.分析:已知旋转角度,旋转方向,可求∠A′CA,根据互余关系求∠A′,根据对应角相等求∠BAC.解:依题意旋转角∠A′CA=40°,由于AC⊥A′B′,由互余关系得∠A′=90°-40°=50°,由对应角相等,得∠BAC=∠A′=50°.故选A.11、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【点睛】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.12、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.二、填空题(每题4分,共24分)13、④⑥①②③⑤【分析】根据中心投影的性质,找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影.【详解】解:①②③⑤都是灯光下的投影,属于中心投影;④因为太阳光属于平行光线,所以日晷属于平行投影;⑥中是平行光线下的投影,属于平行投影,故答案为:④⑥;①②③⑤.【点睛】此题主要考查了中心投影和平行投影的性质,解题的关键是根据平行投影和中心投影的区别进行解答即可.14、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.15、1.2【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.17、(4,7)(2n﹣1,2n﹣1)【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.【详解】解:∵直线l:y=x﹣1与x轴交于点A,∴A1(1,0),观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴An(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1),B2(2,3),B3(4,7),点Bn是线段CnAn+1的中点,∴点Bn的坐标是(2n﹣1,2n﹣1).故答案为:(4,7),(2n﹣1,2n﹣1)(n为正整数).【点睛】此题主要考查一次函数与几何,解题的关键是发现坐标的变化规律.18、①②【分析】根据表格中的数据直接得出平均数相同,再根据一中成绩的中位数86>85可判断一中优秀人数较多,最后根据方差越大,成绩波动越大判断波动性.【详解】由表格数据可知一中和二中的平均成绩相同,故①正确;∵一中成绩的中位数86>85,二中成绩的中位数84<85,竞赛得分85分为优秀∴一中优秀的人数多于二中优秀的人数故②正确;二中的方差大于一中,则二中成绩的波动比一中大,故③错误;故答案为:①②【点睛】本题考查平均数,中位数与方差,难度不大,熟练掌握基本概念是解题的关键.三、解答题(共78分)19、(1)1,1,0(2)作图见解析(3)必过点.(答案不唯一)(4)【分析】(1)根据待定系数法求出的值,再代入和,即可求出m、n的值;(2)根据描点法画出函数的图象即可;(3)根据(2)中函数的图象写出其中一个性质即可;(4)利用图象法,可得函数与有三个不同的交点,根据二次函数的性质求解即可.【详解】(1)将代入中解得∴当时,当时,;(2)如图所示;(3)必过点;(4)设直线,由(1)得∵方程有三个不同的解∴函数与有三个不同的交点根据图象即可知,当方程有三个不同的解时,故.【点睛】本题考查了函数的图象问题,掌握待定系数法、描点法、图象法、二次函数的性质是解题的关键.20、(1)y=﹣x2+2x+3;(2)点E(,0);(3)PB2的值为16+8.【分析】(1)求出点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式,即可求解;(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED为最小,△EDC的周长最小,即可求解;(3)分点P在x轴上方、点P在x轴下方两种情况,由勾股定理可求解.【详解】(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,令x=0,则y=3,令y=0,则x=3,∴点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3;(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,令x=0,则﹣x2+2x+3=0,解得:,∴点A的坐标为(-1,0),∵y=﹣x2+2x+3,∴抛物线的顶点D的坐标为(1,4),则点C′的坐标为(0,﹣3),设直线C′D的表达式为,将C′、D的坐标代入得,解得:,∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E的坐标为(,0);(3)①当点P在x轴上方时,如图2,∵点B、C的坐标分别为(3,0)、(0,3),∴OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,∴16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8;②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.【点睛】本题是二次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法,勾股定理,等腰三角形的性质,点的对称性等知识,熟练掌握二次函数的性质是解题的关键.21、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1).(2)用表格列出所有可能的结果:第二次

第一次

红球1

红球2

白球

黑球

红球1

(红球1,红球2)

(红球1,白球)

(红球1,黑球)

红球2

(红球2,红球1)

(红球2,白球)

(红球2,黑球)

白球

(白球,红球1)

(白球,红球2)

(白球,黑球)

黑球

(黑球,红球1)

(黑球,红球2)

(黑球,白球)

由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)==.考点:概率统计22、(1)见解析;(2)2π-3.【解析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD.(2)连结OA,由S阴影=S扇形AOB-S△AOB求出即可.【详解】(1)证明:∵点A是劣弧BC的中点,∴=∴∠ABC=∠ADB.又∵∠BAD=∠EAB,∴△ABE∽△ADB.∴.∴AB2=AE•AD.(2)解:连结OA∵AE=2,ED=4,由(1)可知∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=1.∴AB=(舍负).∵BD为⊙O的直径,∴∠BAD=90°.在Rt△ABD中,BD=∴OB=.∴OA=OB=AB=∴△AOB为等边三角形∴∠AOB=60°.S阴影=S扇形AOB-S△AOB=【点睛】本题考查的知识点是相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,解题的关键是熟练的掌握相似三角形的判定与性质,圆周角定理,切线的性质,解直角三角形.23、(1)见解析;(2)见解析,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,)【解析】(1)作出A、B、C关于x轴的对称点,然后顺次连接即可得到;(2)把A、B、C绕原点按逆时针旋转90度得到对应点,然后顺次连接即可得到,根据图可写出C2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,).【点睛】本题综合考查了轴对称图形和图形的旋转的作图,图形变换的性质,不管是哪一种变化,找对应点是关键.24、(1)详见解析;(2);(3)4<OC<1.【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=,由特殊角的三角函数值可得∠B=30°,∠BOQ=60°,根据直角三角形的性质得OQ=4,结合题意可得∠QOD度数,由弧长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论