




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PatternRecognitionNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversity1PatternRecognitionNanyangTec标题添加点击此处输入相关文本内容点击此处输入相关文本内容总体概述点击此处输入相关文本内容标题添加点击此处输入相关文本内容标题添加点击此处输入相点击此处输入总体概述点击此处输入标题添WhatisPatternRecognitionClassifyrawdataintothe‘category’ofthepattern.Abranchofartificialintelligenceconcernedwiththeidentificationofvisualoraudiopatternsbycomputers.Forexamplecharacterrecognition,speechrecognition,facerecognition,etc.
Twocategories:syntactic(orstructural)patternrecognitionandstatisticalpatternrecognitionIntroductionPatternRecognition=PatternClassification3WhatisPatternRecognitionCla44WhatisPatternRecognitionTrainingPhaseTrainingdataUnknowndataFeatureExtractionLearning(Featureselection,clustering,discriminantfunctiongeneration,grammarparsing)
Recognition(statistical,structural)ResultsRecognitionPhaseKnowledge5WhatisPatternRecognitionTraWhatisPatternRecognitionTrainingPhaseTrainingdataUnknowndataFeatureExtractionLearning(Featureselection,clustering,discriminantfunctiongeneration,grammarparsing)
Recognition(statistical,structural)ResultsRecognitionPhaseKnowledge6WhatisPatternRecognitionTraCategorisationBasedonApplicationAreasFaceRecognitionSpeechRecognitionCharacterRecognitionetc,etcBasedonDecisionMakingApproachesSyntacticPatternRecognitionStatisticalPatternRecognitionIntroduction7CategorisationBasedonApplicaSyntacticPatternRecognitionAnyproblemisdescribedwithformallanguage,andthesolutionisobtainedthroughgrammaticalparsingInMemoryofProf.FU,King-SunandProf.ShuWenhaoIntroduction8SyntacticPatternRecognitionAStatisticalPatternRecognitionInthestatisticalapproach,eachpatternisviewedasapointinamulti-dimensionalspace.Thedecisionboundariesaredeterminedbytheprobabilitydistributionofthepatternsbelongingtoeachclass,whichmusteitherbespecifiedorlearned.Introduction9StatisticalPatternRecognitioScopeoftheSeminarModule1Distance-BasedClassificationModule2ProbabilisticClassificationModule3LinearDiscriminantAnalysisModule4NeuralNetworksforP.R.Module5ClusteringModule6FeatureSelectionIntroduction10ScopeoftheSeminarModule1DModule1Distance-BasedClassificationNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition11Module1Distance-BasedClassiOverviewDistancebasedclassificationisthemostcommontypeofpatternrecognitiontechniqueConceptsareabasisforotherclassificationtechniquesFirst,aprototypeischosenthroughtrainingtorepresentaclassThen,thedistanceiscalculatedfromanunknowndatatotheclassusingtheprototype
Distance-BasedClassification12OverviewDistancebasedclassifClassificationbydistanceObjectscanberepresentedbyvectorsinaspace.Intraining,wehavethesamples:Inrecognition,anunknowndataisclassifiedbydistance:Howtorepresentclasses?Distance-BasedClassification13ClassificationbydistanceObjePrototypeTofindthepattern-to-classdistance,weneedtouseaclassprototype(pattern):(1)SampleMean.Forclassci,(2)MostTypicalSample.chooseSuchthatisminimized.Distance-BasedClassification14PrototypeTofindthepattern-tPrototype–NearestNeighbour(3)NearestNeighbour.chooseSuchthatisminimized.Nearestneighbourprototypesaresensitivetonoiseandoutliersinthetrainingset.Distance-BasedClassification15Prototype–NearestNeighbour(Prototype–k-NN(4)k-NearestNeighbours.K-NNismorerobustagainstnoise,butismorecomputationallyexpensive.Thepatternyisclassifiedintheclassofitsknearestneighboursfromthetrainingsamples.Thechosendistancedetermineshow‘near’isdefined.Distance-BasedClassification16Prototype–k-NN(4)k-NearestDistanceMeasuresMostfamiliardistancemetricistheEuclideandistanceAnotherexampleistheManhattandistance:Manyotherdistancemeasures…Distance-BasedClassification17DistanceMeasuresMostfamiliarMinimumEuclideanDistance(MED)ClassifierEquivalently,18MinimumEuclideanDistance(MEDecisionBoundaryGivenaprototypeandadistancemetric,itispossibletofindthedecisionboundarybetweenclasses.LinearboundaryNonlinearboundaryDecisionBoundary=DiscriminantFunctionDistance-BasedClassificationlightnesslengthlightnesslength19DecisionBoundaryGivenaprotoExampleDistance-BasedClassification20ExampleDistance-BasedClassifiExampleAnyfishisavectorinthe2-dimensionalspaceofwidthandlightness.fishDistance-BasedClassificationlightnesslength21ExampleAnyfishisavectorinExampleDistance-BasedClassification22ExampleDistance-BasedClassifiSummaryClassificationbythedistancefromanunknowndatatoclassprototypes.Choosingprototype:SampleMeanMostTypicalSampleNearestNeighbourK-NearestNeighbourDecisionBoundary=DiscriminantFunctionDistance-BasedClassification23SummaryClassificationbythedModule2ProbabilisticClassificationNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition24Module2ProbabilisticClassifReviewandExtend25ReviewandExtend25MaximumAPosterior(MAP)ClassifierIdeally,wewanttofavourtheclasswiththehighestprobabilityforthegivenpattern:WhereP(Ci|x)istheaposteriorprobabilityofclassCi
givenx26MaximumAPosterior(MAP)ClasBayesianClassificationBayes’Theoreom:WhereP(x|Ci)istheclassconditionalprobabilitydensity(p.d.f),whichneedstobeestimatedfromtheavailablesamplesorotherwiseassumed.WhereP(Ci)isaprioriprobabilityofclassCi.ProbabilisticClassification27BayesianClassificationBayes’MAPClassifierBayesianClassifier,alsoknownasMAPClassifierSo,assignthepatternxtotheclasswithmaximumweightedp.d.f.ProbabilisticClassification28MAPClassifierBayesianClassifAccuracyVS.RiskHowever,intherealworld,lifeisnotjustaboutaccuracy.Insomecases,asmallmisclassificationmayresultinabigdisaster.Forexample,medicaldiagnosis,frauddetection.TheMAPclassifierisbiasedtowardsthemostlikelyclass.–maximumlikelihoodclassification.ProbabilisticClassification29AccuracyVS.RiskHowever,intLossFunctionOntheotherhand,inthecaseofP(C1)>>P(C2),thelowesterrorratecanbeattainedbyalwaysclassifyingasC1Asolutionistoassignalosstomisclassification.whichleadsto…Alsoknownastheproblemofimbalancedtrainingdata.ProbabilisticClassification30LossFunctionOntheotherhandConditionalRiskInsteadofusingthelikelihoodP(Ci|x),weuseconditionalriskcostofactionigivenclassj
Tominimizeoverallrisk,choosetheactionwiththelowestriskforthepattern:ProbabilisticClassification31ConditionalRiskInsteadofusiConditionalRiskProbabilisticClassification32ConditionalRiskProbabilisticExampleAssumingthattheamountoffraudulentactivityisabout1%ofthetotalcreditcardactivity:C1=FraudP(C1)=0.01C2=NofraudP(C2)=0.99Iflossesareequalformisclassification,then:ProbabilisticClassification33ExampleAssumingthattheamounExampleHowever,lossesareprobablynotthesame.Classifyingafraudulenttransactionaslegitimateleadstodirectdollarlossesaswellasintangiblelosses(e.g.reputation,hasslesforconsumers).Classifyingalegitimatetransactionasfraudulentinconveniencesconsumers,astheirpurchasesaredenied.Thiscouldleadtolossoffuturebusiness.Let’sassumethattheratiooflossfornotfraudtofraudis1to50,i.e.,Amissedfraudis50timesmoreexpensivethanaccidentallyfreezingacardduetolegitimateuse.ProbabilisticClassification34ExampleHowever,lossesareproExampleByincludingthelossfunction,thedecisionboundarieschangesignificantly.InsteadofWeuseProbabilisticClassification35ExampleByincludingthelossfProbabilityDensityFunctionRelativelyspeaking,it’smucheasytoestimateaprioriprobability,e.g.simplytakeToestimatep.d.f.,wecan(1)Assumeaknownp.d.f,andestimateitsparameters(2)Estimatethenon-parametricp.d.ffromtrainingsamplesProbabilisticClassification36ProbabilityDensityFunctionReMaximumLikelihoodParameterEstimationWithoutthelossofgenerality,weconsiderGaussiandensity.P(x|Ci)=TrainingexamplesforclassCiParametervaluestobeidentifiedWearelookingforthatmaximizethelikelihood,soThesamplecovariancematrix!37MaximumLikelihoodParameterEDensityEstimationifwedonotknowthespecificformofthep.d.f.,thenweneedadifferentdensityestimationapproachwhichisanon-parametrictechniquethatusesvariationsofhistogramapproximation.(1)Simplestdensityestimationistouse“bins”.e.g.,in1-Dcase,takethex-axisanddivideintobinsoflengthh.Estimatetheprobabilityofasampleineachbin.kNisthenumberofsamplesinthebin(2)Alternatively,wecantakewindowsofunitvolumeandapplythesewindowstoeachsample.Theoverlapofthewindowsdefinestheestimatedp.d.f.ThistechniqueisknownasParzenwindowsorkernels.ProbabilisticClassification38DensityEstimationifwedonotSummaryBayesianTheoreomMaximumAPosteriorClassifier=MaximumLikelihoodclassiferDensityEstimationProbabilisticClassification39SummaryBayesianTheoreomProbaModule3LinearDiscriminantAnalysisNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition40Module3LinearDiscriminantALinearClassifier-1Alinearclassifierimplementsdiscriminantfunctionoradecisionboundaryrepresentedbyastraightlineinthemultidimensionalspace.Givenaninput,x=(x1…xm)TthedecisionboundaryofalinearclassifierisgivenbyadiscriminantfunctionWithweightvectorw=(w1…wm)TLDA41LinearClassifier-1AlinearLinearClassifier-2Theoutputofthefunctionf(x)foranyinputwilldependuponthevalueofweightvectorandinputvector.Forexample,thefollowingclassdefinitionmaybeemployed:Iff(x)>0ThenxisBalletdancerIff(x)≤0ThenxisRugbyplayerLDA42LinearClassifier-2TheoutpuLinearClassifier-3x1x2f(x)>0f(x)<0f(x)=0wTheboundaryisalwaysorthogonaltotheweightvectorwTheinnerproductoftheinputvectorandtheweightvector,wTx
wTxisthesameforallpointsontheboundary--(-b).LDA43LinearClassifier-3x1x2f(x)>Perceptronx=(x1
…xm)Tw=(w1
…wm)TInputsOutput
Activation
Function
w2
w1
Linear
Combiner
bx2x1yLDA44Perceptronx=(x1…xm)Tw=(wMulti-classproblemLDA45Multi-classproblemLDA45LimitationofPerceptronAsingle-layerperceptroncanperformpatternclassificationonlyonlinearlyseparablepatterns.(a)LinearlySeparablePatterns(b)Non-linearlySeparablePatternsLDA46LimitationofPerceptronAsingGeneralizedLinearDiscriminantFunctionsDecisionboundarieswhichseparatebetweenclassesmaynotalwaysbelinear
Thecomplexityoftheboundariesmaysometimesrequesttheuseofhighlynon-linearsurfaces
Apopularapproachtogeneralizetheconceptoflineardecisionfunctionsistoconsiderageneralizeddecisionfunctionas:LDAwhereisanonlinearmappingfunction47GeneralizedLinearDiscriminanSummaryLinearclassifierVectoranalysisPerceptronPerceptroncannotclassifylinearlynon-separablepatternsMLP,RBF,SVMLDA48SummaryLinearclassifierLDA48Module4NeuralNetworksforPatternRecognitionNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition49Module4NeuralNetworksforPDetailsinanotherseminar:NeuralNetworks50Detailsinanotherseminar:50Module5ClusteringNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition51Module5ClusteringNanyangTecSupervisedLearningVS.unsupervisedLearningClusteringSupervisedLearning(Thetargetoutputisknown)Foreachtraininginputpattern,thenetworkispresentedwiththecorrecttargetanswer(thedesiredoutput)byateacher.UnsupervisedLearning(Thetargetoutputisunknown)Foreachtraininginputpattern,thenetworkadjustsweightswithoutknowingthecorrecttarget.Inunsupervisedtraining,thenetworkself-organizestoclassifysimilarinputpatternsintoclusters.52SupervisedLearningVS.unsupeClusteringCluster:asetofpatternsthataremoresimilartoeachotherthantopatternsnotinthecluster.Givenunlabelledsamplesandhavenoinformationabouttheclasses.Wanttodiscoverifthereareanynaturallyoccurringclustersinthedata.Twoapproaches:ClusteringbyDistanceMeasureClusteringbyDensityEstimationClustering53ClusteringCluster:asetofpaClusteringbyDistanceTwoissues:Howtomeasurethesimilaritybetweensamples?Howtoevaluateapartitioningofasetintoclusters?TypicaldistancemetricsincludeEuclideanDistance,HammingDistance,etc.Clustering54ClusteringbyDistanceTwoissuGoodnessofPartitioningWecanuseameasureofthescatterofeachclustertogaugehowgoodtheoverallclusteringis.Ingeneral,wewouldlikecompactclusterswithalotofspacebetweenthem.WecanusethemeasureofgoodnesstoiterativelymovesamplesfromoneclustertoanothertooptimizethegroupingClustering55GoodnessofPartitioningWecanCriterion:sumofsquarederrorThiscriteriondefinesclustersastheirmeanvectorsmi
inthesensethatitminimizesthesumofthesquaredlengthsoftheerrorx-mi.TheoptimalpartitionisdefinedasonethatminimizesJe,alsocalledminimumvariancepartition.Workfinewhenclustersformwellseparatedcompactclouds,lesswhentherearegreatdifferencesinthenumberofsamplesindifferentclusters.Clustering56Criterion:sumofsquarederroCriterion:ScatterScattermatricesusedinmultiplediscriminantanalysis,i.e.,thewithin-scattermatrixSWandthebetween-scattermatrixSB
ST=SB+SW thatdoesdependonlyfromthesetofsamples(notonthepartitioning)Thecriteriacanbetominimizethewithin-clusterormaximizethebetween-clusterscatterThetrace(sumofdiagonalelements)isthesimplestscalarmeasureofthescattermatrix,asitisproportionaltothesumofthevariancesinthecoordinatedirectionsClustering57Criterion:ScatterScattermatrIterativeoptimizationOnceacriterionfunctionhasbeemselected,clusteringbecomesaproblemofdiscreteoptimization.Asthesamplesetisfinitethereisafinitenumberofpossiblepartitions,andtheoptimalonecanbealwaysfoundbyexhaustivesearch.Mostfrequently,itisadoptedaniterativeoptimizationproceduretoselecttheoptimalpartitionsThebasicidealiesinstartingfromareasonableinitialpartitionand“move”samplesfromoneclustertoanothertryingtominimizethecriterionfunction.Ingeneral,thiskindsofapproachesguaranteelocal,notglobal,optimization.Clustering58IterativeoptimizationOnceaK-MeansClustering-1k-meansclusteringalgorithmInitialization.t=0.Chooserandomvaluesfortheinitialcentersck(t),
k=1,…,KSampling.DrawasamplefromthetrainingsamplesetSimilaritymatching.k(x)denoteindexofbestmatchingcenter4)
Updating.Foreveryk=1,…,K5)
Continuation.t=t+1,gobacktostep(2)untilnonoticeablechangesareobservedClustering59K-MeansClustering-1k-meansK-MeansClustering-2c1c2Clustering60K-MeansClustering-2c1c2ClusK-MeansClustering-3c1c3c2Clustering61K-MeansClustering-3c1c3c2ClClusteringbyDensityEstimatione.g.Findingthenucleusandcytoplasmpelsinwhitebloodcells.ImageGrey-levelHistogram:Setß=valley(localminimum)Ifvalue>ßpeliscytoplasmIfvalue<ßpelisnucleusthisisclusteringbasedondensityestimation.peaks=clustercentres.valleys=clusterboundariesClustering62ClusteringbyDensityEstimatiParameterizedDensityEstimationWeshallbeginwithparameterizedp.d.f.,inwhichtheonlythingthatmustbelearnedisthevalueofanunknownparametervector
Wemakethefollowingassumptions:
Thesamplescomefromaknownnumbercofclasses
ThepriorprobabilitiesP(j)foreachclassareknown
P(x|j,j)(j=1,…,c)areknown
Thevaluesofthecparametervectors1,2,…,careunknownClustering63ParameterizedDensityEstimatiMixtureDensityThecategorylabelsareunknown,andthisdensityfunctioniscalledamixturedensity,andOurgoalwillbetousesamplesdrawnfromthismixturedensitytoestimatetheunknownparametervector.Onceisknown,wecandecomposethemixtureintoitscomponentsanduseaMAPclassifieronthederiveddensities.Clustering64MixtureDensityThecategorylaChineseYing-YangPhilosophyEverythingintheuniversecanbeviewedasaproductofaconstantconflictbetweentheopposites–YingandYang.YingnegativefemaleinvisiblepositivemalevisibleYangTheoptimalstatusisreachedifYing-YangachievesharmonyClustering65ChineseYing-YangPhilosophyEvBayesianYing-YangClusteringTofindaclustersytopartitioninputdataxxisvisiblebutyisinvisiblexdecidesyintrainingbutydecidesxinrunningp(x,y)=p(y|x)p(x)p(x,y)=p(x|y)p(y)xyp(,)Clustering66BayesianYing-YangClusteringTBayesianYingYangHarmonyLearning(1)TominimisethedifferencebetweentheYing-Yangpair:Toselecttheoptimalmodel(clusternumber):whereClustering67BayesianYingYangHarmonyLeaBayesianYingYangHarmonyLearning(2)ParameterlearningusingEMalgorithmE-Step:M-Step:Clustering68BayesianYingYangHarmonyLeaSummaryClusteringbyDistanceGoodnessofparetitioningK-meansClusteringbyDensityEstimationBYYClustering69SummaryClusteringbyDistanceCModule6FeatureSelectionNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition70Module6FeatureSelectionNanyMotivationFeatureSelectionClassifierperformancedependonacombinationofthenumberofsamples,numberoffeatures,andcomplexityoftheclassifier.Q1:Themoresamples,thebetter?Q2:Themorefeatures,thebetter?Q3:Themorecomplex,thebetter?However,thenumberofsamplesisfixedwhentrainingBothrequirestoreducethenumberoffeatures71MotivationFeatureSelectionClaCurseofDimensionalityifthenumberoftrainingsamplesissmallrelativetothenumberoffeatures,theperformancemaybedegraded.Because:withtheincreaseofthenumberoffeatures,thenumberofunknownparameterswillbeincreasedaccordingly,thenthereliabilityoftheparameterestimationdecreases.FeatureSelection72CurseofDimensionalityiftheOcam’sRazorHypothesisor"pluralityshouldnotbepositedwithoutnecessity.""Pluralitasnonestponendasineneccesitate"-WilliamofOckham(ca.1285-1349).Tomakethesystemsimpler,unnecessaryfeaturesmustberemoved.FeatureSelection73Ocam’sRazorHypothesisor"pluFeatureSelectionIngeneral,wewouldliketohaveaclassifiertouseaminimumnumberofdimensions,inordertoachieve: -lesscomputations -statisticalestimationreliabilityFeatureSelection:Givenmmeasurements,choosen<mbestasfeatureWerequire:AcriteriontoevaluatefeaturesAnalgorithmtooptimizethecriterionFeatureSelection74FeatureSelectionIngeneral,wCriterionTypically,InterclassDistance(normalizedbyintraclassdistance)2classes:wheremi1=meanofithfeatureofclass1si1=scatter(variance)ofithfeatureinclass1kclasses:FeatureSelection75CriterionTypically,InterclassOptimizingChoosingnfeaturesfrommmeasurements,thecombinationsareUsuallyanexhaustivecomparisonisnotfeasible.Somesub-optimalstrategiesinclude:RankfeaturesbyeffectivenessandchoosebestIncrementallyaddfeaturestosetofchosenfeaturesSuccessivelyaddanddeletefeaturestochosensetFeatureSelection76OptimizingChoosingnfeatures问题提问与解答问答HERECOMESTHEQUESTIONANDANSWERSESSION问题提问与解答问答HERECOMESTHEQUESTI结束语
CONCLUSION
感谢参与本课程,也感激大家对我们工作的支持与积极的参与。课程后会发放课程满意度评估表,如果对我们课程或者工作有什么建议和意见,也请写在上边,来自于您的声音是对我们最大的鼓励和帮助,大家在填写评估表的同时,也预祝各位步步高升,真心期待着再次相会!结束语
CONCLUSION
感谢参与本课程,也感激大家对我感谢聆听Theusercandemonstrateonaprojectororcomputer,orprintthepresentationandmakeitintoafilm讲师:XXXX日期:20XX.X月感谢聆听讲师:XXXX日期:20XX.X月PatternRecognitionNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversity80PatternRecognitionNanyangTec标题添加点击此处输入相关文本内容点击此处输入相关文本内容总体概述点击此处输入相关文本内容标题添加点击此处输入相关文本内容标题添加点击此处输入相点击此处输入总体概述点击此处输入标题添WhatisPatternRecognitionClassifyrawdataintothe‘category’ofthepattern.Abranchofartificialintelligenceconcernedwiththeidentificationofvisualoraudiopatternsbycomputers.Forexamplecharacterrecognition,speechrecognition,facerecognition,etc.
Twocategories:syntactic(orstructural)patternrecognitionandstatisticalpatternrecognitionIntroductionPatternRecognition=PatternClassification82WhatisPatternRecognitionCla834WhatisPatternRecognitionTrainingPhaseTrainingdataUnknowndataFeatureExtractionLearning(Featureselection,clustering,discriminantfunctiongeneration,grammarparsing)
Recognition(statistical,structural)ResultsRecognitionPhaseKnowledge84WhatisPatternRecognitionTraWhatisPatternRecognitionTrainingPhaseTrainingdataUnknowndataFeatureExtractionLearning(Featureselection,clustering,discriminantfunctiongeneration,grammarparsing)
Recognition(statistical,structural)ResultsRecognitionPhaseKnowledge85WhatisPatternRecognitionTraCategorisationBasedonApplicationAreasFaceRecognitionSpeechRecognitionCharacterRecognitionetc,etcBasedonDecisionMakingApproachesSyntacticPatternRecognitionStatisticalPatternRecognitionIntroduction86CategorisationBasedonApplicaSyntacticPatternRecognitionAnyproblemisdescribedwithformallanguage,andthesolutionisobtainedthroughgrammaticalparsingInMemoryofProf.FU,King-SunandProf.ShuWenhaoIntroduction87SyntacticPatternRecognitionAStatisticalPatternRecognitionInthestatisticalapproach,eachpatternisviewedasapointinamulti-dimensionalspace.Thedecisionboundariesaredeterminedbytheprobabilitydistributionofthepatternsbelongingtoeachclass,whichmusteitherbespecifiedorlearned.Introduction88StatisticalPatternRecognitioScopeoftheSeminarModule1Distance-BasedClassificationModule2ProbabilisticClassificationModule3LinearDiscriminantAnalysisModule4NeuralNetworksforP.R.Module5ClusteringModule6FeatureSelectionIntroduction89ScopeoftheSeminarModule1DModule1Distance-BasedClassificationNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition90Module1Distance-BasedClassiOverviewDistancebasedclassificationisthemostcommontypeofpatternrecognitiontechniqueConceptsareabasisforotherclassificationtechniquesFirst,aprototypeischosenthroughtrainingtorepresentaclassThen,thedistanceiscalculatedfromanunknowndatatotheclassusingtheprototype
Distance-BasedClassification91OverviewDistancebasedclassifClassificationbydistanceObjectscanberepresentedbyvectorsinaspace.Intraining,wehavethesamples:Inrecognition,anunknowndataisclassifiedbydistance:Howtorepresentclasses?Distance-BasedClassification92ClassificationbydistanceObjePrototypeTofindthepattern-to-classdistance,weneedtouseaclassprototype(pattern):(1)SampleMean.Forclassci,(2)MostTypicalSample.chooseSuchthatisminimized.Distance-BasedClassification93PrototypeTofindthepattern-tPrototype–NearestNeighbour(3)NearestNeighbour.chooseSuchthatisminimized.Nearestneighbourprototypesaresensitivetonoiseandoutliersinthetrainingset.Distance-BasedClassification94Prototype–NearestNeighbour(Prototype–k-NN(4)k-NearestNeighbours.K-NNismorerobustagainstnoise,butismorecomputationallyexpensive.Thepatternyisclassifiedintheclassofitsknearestneighboursfromthetrainingsamples.Thechosendistancedetermineshow‘near’isdefined.Distance-BasedClassification95Prototype–k-NN(4)k-NearestDistanceMeasuresMostfamiliardistancemetricistheEuclideandistanceAnotherexampleistheManhattandistance:Manyotherdistancemeasures…Distance-BasedClassification96DistanceMeasuresMostfamiliarMinimumEuclideanDistance(MED)ClassifierEquivalently,97MinimumEuclideanDistance(MEDecisionBoundaryGivenaprototypeandadistancemetric,itispossibletofindthedecisionboundarybetweenclasses.LinearboundaryNonlinearboundaryDecisionBoundary=DiscriminantFunctionDistance-BasedClassificationlightnesslengthlightnesslength98DecisionBoundaryGivenaprotoExampleDistance-BasedClassification99ExampleDistance-BasedClassifiExampleAnyfishisavectorinthe2-dimensionalspaceofwidthandlightness.fishDistance-BasedClassificationlightnesslength100ExampleAnyfishisavectorinExampleDistance-BasedClassification101ExampleDistance-BasedClassifiSummaryClassificationbythedistancefromanunknowndatatoclassprototypes.Choosingprototype:SampleMeanMostTypicalSampleNearestNeighbourK-NearestNeighbourDecisionBoundary=DiscriminantFunctionDistance-BasedClassification102SummaryClassificationbythedModule2ProbabilisticClassificationNanyangTechnologicalUniversityDr.Shi,DamingHarbinEngineeringUniversityPatternRecognition103Module2ProbabilisticClassifReviewandExtend104ReviewandExtend25MaximumAPosterior(MAP)ClassifierIdeally,wewanttofavourtheclasswiththehighestprobabilityforthegivenpattern:WhereP(Ci|x)istheaposteriorprobabilityofclassCi
givenx105MaximumAPosterior(MAP)ClasBayesianClassificationBayes’Theoreom:WhereP(x|Ci)istheclassconditionalprobabilitydensity(p.d.f),whichneedstobeestimatedfromtheavailablesamplesorotherwiseassumed.WhereP(Ci)isaprioriprobabilityofclassCi.ProbabilisticClassification106BayesianClassificatio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石材供应合同
- 2025工业区仓库租赁合同模板
- 2025建筑工程包工不包料合同范本
- 2025年的单身公寓租赁合同样本
- 2025年农产品种子购销合同
- 2025标准版简单个人租房合同示例
- 2025年反担保抵押合同范本
- 2025标准版城镇公寓买卖合同
- 2025标准木材采购合同范本
- 《我国气候特点》课件
- 儿童滑膜炎护理查房
- 水闸安全鉴定综合报告
- 瓦特改良蒸汽机课件
- 2024年蚂蚁云客服支付宝云客服工作证客户工作证培训试题及答案
- 酒店水单模板
- NB-T31022-2012风电达标投产验收规程1-风电发电场工程达标投产验收专用
- 社会单位1234+N消防安全标准化管理达标评定标准
- 熔射(热喷涂工艺)
- 地质灾害防治培训教学课件
- 光电子技术及应用(第2版)章节习题及自测题参考答案
- 特殊类型的类风湿关节炎诊治进展
评论
0/150
提交评论