爱因斯坦论文(英语)_第1页
爱因斯坦论文(英语)_第2页
爱因斯坦论文(英语)_第3页
爱因斯坦论文(英语)_第4页
爱因斯坦论文(英语)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经典word整理文档,仅参考,双击此处可删除页眉页脚。本资料属于网络整理,如有侵权,请联系删除,谢谢!ONTHEELECTRODYNAMICSOFMOVINGBODIESItisknownthatMaxwell'selectrodynamics--asusuallyunderstoodatthepresenttime--whenappliedtomovingbodies,leadstoasymmetrieswhichdonotappeartobeinherentinthephenomena.Take,forexample,thereciprocalelectrodynamicactionofamagnetandaconductor.Theobservablephenomenonheredependsonlyontherelativemotionoftheconductorandthemagnet,whereasthecustomaryviewdrawsasharpdistinctionbetweenthetwocasesinwhicheithertheoneortheotherofthesebodiesisinmotion.Forifthemagnetisinmotionandtheconductoratrest,therearisesintheneighbourhoodofthemagnetanelectricfieldwithacertaindefiniteenergy,producingacurrentattheplaceswherepartsoftheconductoraresituated.Butifthemagnetisstationaryandtheconductorinmotion,noelectricfieldarisesintheneighbourhoodofthemagnet.Intheconductor,however,wefindanelectromotiveforce,towhichinitselfthereisnocorrespondingenergy,butwhichgivesrise--assumingequalityofrelativemotioninthetwocasesdiscussed--toelectriccurrentsofthesamepathandintensityasthoseproducedbytheelectricforcesintheformercase.Examplesofthissort,togetherwiththeunsuccessfulattemptstodiscoveranymotionoftheearthrelativelytothe``lightmedium,''suggestthatthephenomenaofelectrodynamicsaswellasofmechanicspossessnopropertiescorrespondingtotheideaofabsoluterest.Theysuggestratherthat,ashasalreadybeenshowntothefirstorderofsmallquantities,thesamelawsofelectrodynamicsandopticswillbevalidforallframesofreferenceforwhichtheequationsofmechanicsholdgood.1Wewillraisethisconjecture(thepurportofwhichwillhereafterbecalledthe``PrincipleofRelativity'')tothestatusofapostulate,andalsointroduceanotherpostulate,whichisonlyapparentlyirreconcilablewiththeformer,namely,thatlightisalwayspropagatedinemptyspacewithadefinitevelocitycwhichisindependentofthestateofmotionoftheemittingbody.ThesetwopostulatessufficefortheattainmentofasimpleandconsistenttheoryoftheelectrodynamicsofmovingbodiesbasedonMaxwell'stheoryforstationarybodies.Theintroductionofa``luminiferousether''willprovetobesuperfluousinasmuchastheviewheretobedevelopedwillnotrequirean``absolutelystationaryspace''providedwithspecialproperties,norassignavelocity-vectortoapointoftheemptyspaceinwhichelectromagneticprocessestakeplace.Thetheorytobedevelopedisbased--likeallelectrodynamics--onthekinematicsoftherigidbody,sincetheassertionsofanysuchtheoryhavetodowiththerelationshipsbetweenrigidbodies(systemsofco-ordinates),clocks,andelectromagneticprocesses.Insufficientconsiderationofthiscircumstanceliesattherootofthedifficultieswhichtheelectrodynamicsofmovingbodiesatpresentencounters.I.KINEMATICALPART§1.DefinitionofSimultaneity2aIfamaterialpointisatrestrelativelytothissystemofco-ordinates,itspositioncanbedefinedrelativelytheretobytheemploymentofrigidstandardsofmeasurementandthemethodsofEuclideangeometry,andcanbeexpressedinCartesianco-ordinates.Ifwewishtodescribethemotionofamaterialpoint,wegivethevaluesofitsco-ordinatesasfunctionsofthetime.Nowwemustbearcarefullyinmindthatamathematicaldescriptionofthiskindhasnophysicalmeaningunlesswearequiteclearastowhatweunderstandby``time.''Wehavetotakeintoaccountthatallourjudgmentsinwhichtimeplaysapartarealwaysjudgmentsofsimultaneousevents.If,forinstance,Isay,``Thattrainarriveshereat7o'clock,''Imeansomethinglikethis:``Thepointingofthesmallhandofmywatchto7andthearrivalofthetrainaresimultaneousevents.''3Itmightappearpossibletoovercomeallthedifficultiesattendingthedefinitionof``time''bysubstituting``thepositionofthesmallhandofmywatch''for``time.''Andinfactsuchadefinitionissatisfactorywhenweareconcernedwithdefiningatimeexclusivelyfortheplacewherethewatchislocated;butitisnolongersatisfactorywhenwehavetoconnectintimeseriesofeventsoccurringatdifferentplaces,or--whatcomestothesamething--toevaluatethetimesofeventsoccurringatplacesremotefromthewatch.Wemight,ofcourse,contentourselveswithtimevaluesdeterminedbyanobserverstationedtogetherwiththewatchattheoriginoftheco-ordinates,andco-ordinatingthecorrespondingpositionsofthehandswithlightsignals,givenoutbyeveryeventtobetimed,andreachinghimthroughemptyspace.Butthisco-ordinationhasthedisadvantagethatitisnotindependentofthestandpointoftheobserverwiththewatchorclock,asweknowfromexperience.Wearriveatamuchmorepracticaldeterminationalongthefollowinglineofthought.IfatthepointAofspacethereisaclock,anobserveratAcandeterminethetimevaluesofeventsintheimmediateproximityofAbyfindingthepositionsofthehandswhicharesimultaneouswiththeseevents.IfthereisatthepointBofspaceanotherclockinallrespectsresemblingtheoneatA,itispossibleforanobserveratBtodeterminethetimevaluesofeventsintheimmediateneighbourhoodofB.Butitisnotpossiblewithoutfurtherassumptiontocompare,inrespectoftime,aneventatAwithaneventatB.Wehavesofardefinedonlyan``Atime''anda``Btime.''Wehavenotdefinedacommon``time''forAandB,forthelattercannotbedefinedatallunlessweestablishbydefinitiatthe``time''requiredbylighttotravelfromAtoBequalsthe``time''itrequirestotravelfromBtoA.Letarayoflightstartatthe``Atime''fromAtowardsB,letitatthe``Btime''bereflectedatBinthedirectionofA,andarriveagainatAatthe``Atime''.InaccordancewithdefinitionthetwoclockssynchronizeifWeassumethatthisdefinitionofsynchronismisfreefromcontradictions,andpossibleforanynumberofpoints;andthatthefollowingrelationsareuniversallyvalid:--BAABBCThuswiththehelpofcertainimaginaryphysicalexperimentswehavesettledwhatistobeunderstoodbysynchronousstationaryclockslocatedatdifferentplaces,andhaveevidentlyobtainedadefinitionof``simultaneous,''or``synchronous,''andof``time.''The``time''ofaneventisthatwhichisgivensimultaneouslywiththeeventbyastationaryclocklocatedattheplaceoftheevent,thisclockbeingsynchronous,andindeedsynchronousforalltimedeterminations,withaspecifiedstationaryclock.Inagreementwithexperiencewefurtherassumethequantitytobeauniversalconstant--thevelocityoflightinemptyspace.Itisessentialtohavetimedefinedbymeansofstationaryclocksinthestationarysystem,andthetimenowdefinedbeingappropriatetothestationarysystemwecallit``thetimeofthestationarysystem.''§2.OntheRelativityofLengthsandTimes,aawheretimeintervalistobetakeninthesenseofthedefinitionin§1.Lettherebegivenastationaryrigidrod;andletitslengthbelasmeasuredbyameasuring-rodwhichisalsostationary.Wenowimaginetheaxisoftherodlyingalongtheaxisofxofthestationarysystemofco-ordinates,andthatauniformmotionofparalleltranslationwithvelocityvalongtheaxisofxinthedirectionofincreasingxisthenimpartedtotherod.Wenowinquireastothelengthofthemovingrod,andimagineitslengthtobeascertainedbythefollowingtwooperations:--))§1,aaInaccordancewiththeprincipleofrelativitythelengthtobediscoveredbytheoperation(a)--wewillcallit``thelengthoftherodinthemovingsystem''--mustbeequaltothelengthlofthestationaryrod.Thelengthtobediscoveredbytheoperation(b)wewillcall``thelengthofthe(moving)rodinthestationarysystem.''Thisweshalldetermineonthebasisofourtwoprinciples,andweshallfindthatitdiffersfroml.Currentkinematicstacitlyassumesthatthelengthsdeterminedbythesetwooperationsarepreciselyequal,orinotherwords,thatamovingrigidbodyattheepochtmayingeometricalrespectsbeperfectlyrepresentedbythesamebodyatrestinadefiniteposition.WeimaginefurtherthatatthetwoendsAandBoftherod,clocksareplacedwhichsynchronizewiththeclocksofthestationarysystem,thatistosaythattheirindicationscorrespondatanyinstanttothe``timeofthestationarysystem''attheplaceswheretheyhappentobe.Theseclocksaretherefore``synchronousinthestationarysystem.''Weimaginefurtherthatwitheachclockthereisamovingobserver,andthattheseobserversapplytobothclocksthecriterionestablishedin§1forthesynchronizationoftwoclocks.LetarayoflightdepartfromAatthetime4,letitbereflectedatBatthetime,andreachAagainatthetime.Takingintoconsiderationtheprincipleoftheconstancyofthevelocityoflightwefindthatwheredenotesthelengthofthemovingrod--measuredinthestationarysystem.Observersmovingwiththemovingrodwouldthusfindthatthetwoclockswerenotsynchronous,whileobserversinthestationarysystemwoulddeclaretheclockstobesynchronous.Soweseethatwecannotattachanyabsolutesignificationtotheconceptofsimultaneity,butthattwoeventswhich,viewedfromasystemofco-ordinates,aresimultaneous,cannolongerbelookeduponassimultaneouseventswhenenvisagedfromasystemwhichisinmotionrelativelytothatsystem.§3.TheoryoftheTransformationofCo-ordinatesandTimesfromaStationarySystemtoanotherSysteminUniformMotionofTranslationRelativelytotheFormeraXYZaaNowtotheoriginofoneofthetwosystems()letaconstantvelocityvbeimpartedinthedirectionoftheincreasingxoftheotherstationarysystem(K),andletthisvelocitybecommunicatedtotheaxesoftheco-ordinates,therelevantmeasuring-rod,andtheclocks.ToanytimeofthestationarysystemKtherethenwillcorrespondadefinitepositionoftheaxesofthemovingsystem,andfromreasonsofsymmetryweareentitledtoassumethatthemotionofkmaybesuchthattheaxesofthemovingsystemareatthetimet(thist''alwaysdenotesatimeofthestationarysystem)paralleltotheaxesofthestationarysystem.WenowimaginespacetobemeasuredfromthestationarysystemKbymeansofthestationarymeasuring-rod,andalsofromthemovingsystemkbymeansofthemeasuring-rodmovingwithit;andthatwethusobtaintheco-ordinates,,z,and,,respectively.Further,letthetimetofthestationarysystembedeterminedforallpointsthereofatwhichthereareclocksbymeansoflightsignalsinthemannerindicatedin§1;similarlyletthetimeofthemovingsystembedeterminedforallpointsofthemovingsystematwhichthereareclocksatrestrelativelytothatsystembyapplyingthemethod,givenin§1,oflightsignalsbetweenthepointsatwhichthelatterclocksarelocated.Toanysystemofvalues,,z,t,whichcompletelydefinestheplaceandtimeofaneventinthestationarysystem,therebelongsasystemofvalues,,,determiningthateventrelativelytothesystem,andourtaskisnowtofindthesystemofequationsconnectingthesequantities.Inthefirstplaceitisclearthattheequationsmustbelinearonaccountofthepropertiesofhomogeneitywhichweattributetospaceandtime.Ifweplacex'=-vt,itisclearthatapointatrestinthesystemkmusthaveasystemofvaluesx',,z,independentoftime.Wefirstdefineasafunctionofx',,z,andt.Todothiswehavetoexpressinequationsthatisnothingelsethanthesummaryofthedataofclocksatrestinsystem,whichhavebeensynchronizedaccordingtotherulegivenin§1.FromtheoriginofsystemkletaraybeemittedatthetimealongtheX-axisto',bereflectedthencetotheoriginoftheco-ordinates,arrivingthere;wethenmusthave,or,byinsertingtheargumentsandatthetimeatthetimeofthefunctionandapplyingtheprincipleoftheconstancyofthevelocityoflightinthestationarysystem:--Hence,ifx'bechoseninfinitesimallysmall,orItistobenotedthatinsteadoftheoriginoftheco-ordinateswemighthavechosenanyotherpointforthepointoforiginoftheray,andtheequationjustobtainedisthereforevalidforallvaluesofx',,z.Ananalogousconsideration--appliedtotheaxesofYandZ--itbeingborneinmindthatlightisalwayspropagatedalongtheseaxes,whenviewedfromthestationarysystem,withthevelocitygivesusSinceisalinearfunction,itfollowsfromtheseequationsthatwhereaisafunctionthatattheoriginof,atpresentunknown,andwhereforbrevityitisassumed,whent=0.Withthehelpofthisresultweeasilydeterminethequantities,,byexpressinginequationsthatlight(asrequiredbytheprincipleoftheconstancyofthevelocityoflight,incombinationwiththeprincipleofrelativity)isalsopropagatedwithvelocitycwhenmeasuredinthemovingsystem.ForarayoflightemittedatthetimeinthedirectionoftheincreasingButtheraymovesrelativelytotheinitialpointof,whenmeasuredinthestationarysystem,withthevelocity,sothatIfweinsertthisvalueoftintheequationfor,weobtainInananalogousmannerwefind,byconsideringraysmovingalongthetwootheraxes,thatwhenThusSubstitutingforx'itsvalue,weobtainwhereandisanasyetunknownfunctionof.Ifnoassumptionwhateverbemadeastotheinitialpositionofthemovingsystemandastothezeropointofconstantistobeplacedontherightsideofeachoftheseequations.,anadditiveWenowhavetoprovethatanyrayoflight,measuredinthemovingsystem,ispropagatedwiththevelocity,if,aswehaveassumed,thisisthecaseinthestationarysystem;forwehavenotasyetfurnishedtheproofthattheprincipleoftheconstancyofthevelocityoflightiscompatiblewiththeprincipleofrelativity.Atthetime,whentheoriginoftheco-ordinatesiscommontothetwosystems,letasphericalwavebeemittedtherefrom,andbepropagatedwiththevelocitycinsystemK.If(,,z)beapointjustattainedbythiswave,then++=.TransformingthisequationwiththeaidofourequationsoftransformationweobtainafterasimplecalculationThewaveunderconsiderationisthereforenolessasphericalwavewithvelocityofpropagationcwhenviewedinthemovingsystem.Thisshowsthatourtwofundamentalprinciplesarecompatible.5Intheequationsoftransformationwhichhavebeendevelopedthereentersanunknownfunctionof,whichwewillnowdetermine.Forthispurposeweintroduceathirdsystemofco-ordinates,whichrelativelytothesystemkisinastateofparalleltranslatorymotionparalleltotheaxisof,such*1thattheoriginofco-ordinatesofsystemAtthetimet=0letallthreeoriginscoincide,andwhent==yz=0letthetimet'ofthesystembezero.Wecalltheco-ordinates,measuredinthesystem,',y',z',andbyatwofoldapplicationofourequationsoftransformationweobtain,moveswithvelocity-vontheaxisof.Sincetherelationsbetweenx',y',z'and,,zdonotcontainthetimet,thesystemsKandareatrestwithrespecttooneanother,anditisclearthatthetransformationfromKtomustbetheidenticaltransformation.ThusWenowinquireintothesignificationoftheaxisofYofsystemkwhichliesbetween.ThispartoftheaxisofYisarodmovingperpendicularlytoits.WegiveourattentiontothatpartofandaxiswithvelocityvrelativelytosystemK.ItsendspossessinKtheco-ordinatesThelengthoftherodmeasuredinKistherefore;andthisgivesusthemeaningofthefunction.Fromreasonsofsymmetryitisnowevidentthatthelengthofagivenrodmovingperpendicularlytoitsaxis,measuredinthestationarysystem,mustdependonlyonthevelocityandnotonthedirectionandthesenseofthemotion.Thelengthofthemovingrodmeasuredinthestationarysystemdoesnotchange,therefore,ifvand-vareinterchanged.Hencefollowsthat,orItfollowsfromthisrelationandtheonepreviouslyfoundthattransformationequationswhichhavebeenfoundbecome,sothatthewhere§4.PhysicalMeaningoftheEquationsObtainedinRespecttoMovingRigidBodiesandMovingClocks6a,.KvTheequationofthissurfaceexpressedin,,zatthetimet=0isArigidbodywhich,measuredinastateofrest,hastheformofasphere,thereforehasinastateofmotion--viewedfromthestationarysystem--theformofanellipsoidofrevolutionwiththeaxesThus,whereastheYandZdimensionsofthesphere(andthereforeofeveryrigidbodyofnomatterwhatform)donotappearmodifiedbythemotion,theXdimensionappearsshortenedintheratio,i.e.thegreaterthevalueof,thegreatertheshortening.Forvcallmovingobjects--viewedfromthe``stationary''system--shrivelupintoplanefigures.*2Forvelocitiesgreaterthanthatoflightourdeliberationsbecomemeaningless;weshall,however,findinwhatfollows,thatthevelocityoflightinourtheoryplaysthepart,physically,ofaninfinitelygreatvelocity.Itisclearthatthesameresultsholdgoodofbodiesatrestinthe``stationary''system,viewedfromasysteminuniformmotion.Further,weimagineoneoftheclockswhicharequalifiedtomarkthetimetwhenatrestrelativelytothestationarysystem,andthetimewhenatrestrelativelytothemovingsystem,tobelocatedattheoriginoftheco-ordinatesof,andsoadjustedthatitmarksthetime.Whatistherateofthisclock,whenviewedfromthestationarysystem?Betweenthequantitiesx,t,and,whichrefertothepositionoftheclock,wehave,evidently,vtandTherefore,whenceitfollowsthatthetimemarkedbytheclock(viewedinthestationarysystem)isslowbysecondspersecond,or--neglectingmagnitudesoffourth.andhigherorder--byFromthisthereensuesthefollowingpeculiarconsequence.IfatthepointsAandBofKtherearestationaryclockswhich,viewedinthestationarysystem,aresynchronous;andiftheclockatAismovedwiththevelocityvalongthelineABtoB,thenonitsarrivalatBthetwoclocksnolongersynchronize,buttheclockmovedfromAtoBlagsbehindtheotherwhichhasremainedatBby(uptomagnitudesoffourthandhigherorder),tbeingthetimeoccupiedinthejourneyfromAtoB.ItisatonceapparentthatthisresultstillholdsgoodiftheclockmovesfromAtoBinanypolygonalline,andalsowhenthepointsAandBcoincide.Ifweassumethattheresultprovedforapolygonallineisalsovalidforacontinuouslycurvedline,wearriveatthisresult:IfoneoftwosynchronousclocksatAismovedinaclosedcurvewithconstantvelocityuntilitreturnstoA,thejourneylastingtseconds,thenbytheclockwhichhasremainedatrestthetravelledclockonitsarrivalatAwillbesecondslow.Thenceweconcludethatabalance-clockattheequatormustgomoreslowly,byaverysmallamount,thana7preciselysimilarclocksituatedatoneofthepolesunderotherwiseidenticalconditions.§5.TheCompositionofVelocitieskXK,awhereanddenoteconstants.Required:themotionofthepointrelativelytothesystemK.Ifwiththehelpoftheequationsoftransformationdevelopedin§3weintroducethequantities,,z,tintotheequationsofmotionofthepoint,weobtainThusthelawoftheparallelogramofvelocitiesisvalidaccordingtoourtheoryonlytoafirstapproximation.Weset*3aisthentobelookeduponastheanglebetweenthevelocitiesvandw.Afterasimplecalculationweobtain*4Itisworthyofremarkthatvandwenterintotheexpressionfortheresultantvelocityinasymmetricalmanner.IfwalsohasthedirectionoftheaxisofX,wegetItfollowsfromthisequationthatfromacompositionoftwovelocitieswhicharelessthan,therealwaysresultsavelocitylessthan.Forifwesetandbeingpositiveandlessthan,then,Itfollows,further,thatthevelocityoflightccannotbealteredbycompositionwithavelocitylessthanthatoflight.ForthiscaseweobtainWemightalsohaveobtainedtheformulaforV,forthecasewhenvandwhavethesamedirection,bycompoundingtwotransformationsinaccordancewith§3.IfinadditiontothesystemsKandkfiguringin§3weintroducestillanothersystemofco-ordinatesk'movingparallelto,itsinitialpointmovingontheaxisof*5withthevelocityw,weobtainequationsbetweenthequantities,,z,tandthecorrespondingquantitiesof',whichdifferfromtheequationsfoundin§3onlyinthattheplaceofv''istakenbythequantityfromwhichweseethatsuchparalleltransformations--necessarily--formagroup.Wehavenowdeducedtherequisitelawsofthetheoryofkinematicscorrespondingtoourtwoprinciples,andweproceedtoshowtheirapplicationtoelectrodynamics.II.ELECTRODYNAMICALPART§6.TransformationoftheMaxwell-HertzEquationsforEmptySpace.OntheNatureoftheElectromotiveForcesOccurringinaMagneticFieldDuringMotionwhere(X,Y,Z)denotesthevectoroftheelectricforce,and(L,M,N)thatmagneticforce.oftheIfweapplytotheseequationsthetransformationdevelopedin§3,byreferringtheelectromagneticprocessestothesystemofco-ordinatesthereintroduced,movingwiththevelocity,weobtaintheequationswhereNowtheprincipleofrelativityrequiresthatiftheMaxwell-HertzequationsforemptyspaceholdgoodinsystemK,theyalsoholdgoodinsystem;thatistosaythatthevectorsoftheelectricandthemagneticforce--(,,)and(,,)--ofthemovingsystem,whicharedefinedbytheirponderomotiveeffectsonelectricormagneticmassesrespectively,satisfythefollowingequations:--Evidentlythetwosystemsofequationsfoundforsystemkmustexpressexactlythesamething,sincebothsystemsofequationsareequivalenttotheMaxwell-HertzequationsforsystemK.Since,further,theequationsofthetwosystemsagree,withtheexceptionofthesymbolsforthevectors,itfollowsthatthefunctionsoccurringinthesystemsofequationsatcorrespondingplacesmustagree,withtheexceptionofafactor,whichiscommonforallfunctionsoftheonesystemofequations,andandbutdependsupon.ThuswehavetherelationsisindependentofIfwenowformthereciprocalofthissystemofequations,firstlybysolvingtheequationsjustobtained,andsecondlybyapplyingtheequationstotheinversetransformation(fromktoK),whichischaracterizedbythevelocity,itfollows,whenweconsiderthatthetwosystemsofequationsthusobtainedmustbeidentical,that.Further,fromreasonsofsymmetry8andthereforeandourequationsassumetheformAstotheinterpretationoftheseequationswemakethefollowingremarks:Letapointchargeofelectricityhavethemagnitude``one''whenmeasuredinthestationarysystemK,i.e.letitwhenatrestinthestationarysystemexertaforceofonedyneuponanequalquantityofelectricityatadistanceofonecm.Bytheprincipleofrelativitythiselectricchargeisalsoofthemagnitude``one''whenmeasuredinthemovingsystem.Ifthisquantityofelectricityisatrestrelativelytothestationarysystem,thenbydefinitionthevector(X,Y,Z)isequaltotheforceactinguponit.Ifthequantityofelectricityisatrestrelativelytothemovingsystem(atleastattherelevantinstant),thentheforceactinguponit,measuredinthemovingsystem,isequaltothevector(,,).Consequentlythefirstthreeequationsaboveallowthemselvestobeclothedinwordsinthetwofollowingways:--a,aaTheanalogyholdswith``magnetomotiveforces.''Weseethatelectromotiveforceplaysinthedevelopedtheorymerelythepartofanauxiliaryconcept,whichowesitsintroductiontothecircumstancethatelectricandmagneticforcesdonotexistindependentlyofthestateofmotionofthesystemofco-ordinates.Furthermoreitisclearthattheasymmetrymentionedintheintroductionasarisingwhenweconsiderthecurrentsproducedbytherelativemotionofamagnetandaconductor,nowdisappears.Moreover,questionsastothe``seat''ofelectrodynamicelectromotiveforces(unipolarmachines)nowhavenopoint.§7.TheoryofDoppler'sPrincipleandofAberrationaaawhereHere(,,)and(,,)arethevectorsdefiningtheamplitudeofthewave-train,andl,m,nthedirection-cosinesofthewave-normals.Wewishtoknowtheconstitutionofthesewaves,whentheyareexaminedbyanobserveratrestinthemovingsystem.Applyingtheequationsoftransformationfoundin§6forelectricandmagneticforces,andthosefoundin§3fortheco-ordinatesandthetime,weobtaindirectlywhereFromtheequationforitfollowsthatifanobserverismovingwithvelocityvrelativelytoaninfinitelydistantsourceoflightoffrequency,insuchawaythattheconnectingline``source-observer''makestheanglewiththevelocityoftheobserverreferredtoasystemofco-ordinateswhichisatrestrelativelytothesourceoflight,thefrequencyofthelightperceivedbytheobserverisgivenbytheequationThisisDoppler'sprincipleforanyvelocitieswhatever.WhenassumestheperspicuousformtheequationWeseethat,incontrastwiththecustomaryview,when.Ifwecalltheanglebetweenthewave-normal(directionoftheray)inthemovingsystemandtheconnectingline``source-observer''theform,theequationfor*6assumesThisequationexpressesthelawofaberrationinitsmostgeneralform.Iftheequationbecomessimply,Westillhavetofindtheamplitudeofthewaves,asitappearsinthemovingsystem.IfwecalltheamplitudeoftheelectricormagneticforceAorrespectively,accordinglyasitismeasuredinthestationarysystemorinthemovingsystem,weobtainwhichequation,if,simplifiesintoItfollowsfromtheseresultsthattoanobserverapproachingasourceoflightwiththevelocity,thissourceoflightmustappearofinfiniteintensity.§8.TransformationoftheEnergyofLightRays.TheoryofthePressureofRadiationExertedonPerfectReflectors,aaKin.,,naWemaythereforesaythatthissurfacepermanentlyenclosesthesamelightcomplex.Weinquireastothequantityofenergyenclosedbythissurface,viewedinsystem,thatis,astotheenergyofthelightcomplexrelativelytothesystem.Thesphericalsurface--viewedinthemovingsystem--isanellipsoidalsurface,theequationforwhich,atthetime,isIfSisthevolumeofthesphere,andthatofthisellipsoid,thenbyasimplecalculationThus,ifwecallthelightenergyenclos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论