黑龙江省齐齐哈尔市梅里斯区达呼店中学2022年数学九年级第一学期期末统考模拟试题含解析_第1页
黑龙江省齐齐哈尔市梅里斯区达呼店中学2022年数学九年级第一学期期末统考模拟试题含解析_第2页
黑龙江省齐齐哈尔市梅里斯区达呼店中学2022年数学九年级第一学期期末统考模拟试题含解析_第3页
黑龙江省齐齐哈尔市梅里斯区达呼店中学2022年数学九年级第一学期期末统考模拟试题含解析_第4页
黑龙江省齐齐哈尔市梅里斯区达呼店中学2022年数学九年级第一学期期末统考模拟试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于的一元二次方程有两个实数根则的取值范围是()A. B.且 C.且 D.2.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是A. B. C. D.3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.4.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2•a4=a85.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.6.关于x的一元二次方程x2﹣2x﹣m=0有实根,则m的值可能是()A.﹣4 B.﹣3 C.﹣2 D.﹣17.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A. B.π C.2π D.4π8.下列事件中,属于随机事件的是().A.13名同学中至少有两名同学的生日在同一个月B.在只有白球的盒子里摸到黑球C.经过交通信号灯的路口遇到红灯D.用长为,,的三条线段能围成一个边长分别为,,的三角形9.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()A. B.C. D.10.已知两个相似三角形的面积比为4:9,则周长的比为()A.2:3 B.4:9C.3:2 D.11.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.12.已知如图,中,,点在边上,且,则的度数是().A. B. C. D.二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.14.抛物线y=x2+2x+3的顶点坐标是_____________.15.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.16.cos30°+sin45°+tan60°=_____.17.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.18.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为_____.三、解答题(共78分)19.(8分)在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.20.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21.(8分)如图,相交于点,连结.(1)求证:;(2)直接回答与是不是位似图形?(3)若,求的长.22.(10分)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.23.(10分)函数的图象的对称轴为直线.(1)求的值;(2)将函数的图象向右平移2个单位,得到新的函数图象.①直接写出函数图象的表达式;②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.24.(10分)已知函数y=mx1﹣(1m+1)x+1(m≠0),请判断下列结论是否正确,并说明理由.(1)当m<0时,函数y=mx1﹣(1m+1)x+1在x>1时,y随x的增大而减小;(1)当m>0时,函数y=mx1﹣(1m+1)x+1图象截x轴上的线段长度小于1.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.26.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】由二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式组,解之即可得出结论.【详解】解:关于的一元二次方程有两个不相等的实数根,,解得:且.故选:C.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△,列出关于的一元一次不等式组是解题的关键.2、B【解析】根据常见几何体的三视图解答即可得.【详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.3、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.4、C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.【点睛】本题考查了幂的运算,解题的关键是掌握幂的运算法则.5、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.6、D【分析】根据题意可得,≥0,即可得出答案.【详解】解:∵关于x的一元二次方程x2﹣2x﹣m=0有实根,∴△=(﹣2)2﹣4×1×(﹣m)≥0,解得:m≥﹣1.故选D.【点睛】本题考查的是一元二次方程的根的判别式,当时,有两个不等实根;当时,有两个相等实根;当时,没有实数根.7、A【解析】试题解析:连接OD.∵CD⊥AB,故,即可得阴影部分的面积等于扇形OBD的面积,又∴OC=2,∴S扇形OBD即阴影部分的面积为故选A.点睛:垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.8、C【分析】根据随机事件,必然事件,不可能事件的定义对每一选项进行判断即可.【详解】A、必然事件,不符合题意;B、不可能事件,不符合题意;C、随机事件,符合题意;D、不可能事件,不符合题意;故选C.【点睛】本题考查随机事件,正确理解随机事件,必然事件,不可能事件的定义是解题的关键.9、C【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.【详解】如图,连接、、,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,∴点的坐标为,故选:C【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.10、A【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,

∴两个相似三角形的相似比为2:1,

∴这两个相似三角形的周长之比为2:1.故选A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.11、D【解析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为,即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B点的坐标为.故选D.12、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x.

∵AD=BD,

∴∠ABD=∠A=x;

∵BD=BC,

∴∠BCD=∠BDC=∠ABD+∠A=2x;

∵AB=AC,

∴∠ABC=∠BCD=2x,

∴∠DBC=x;

∵x+2x+2x=180°,

∴x=36°,

∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.二、填空题(每题4分,共24分)13、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,

∴∠ABC=90°,

∴∠A=90°-∠ACB=40°,

由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.14、(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.15、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R=3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故答案为:120°.【点睛】考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.16、【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【详解】cos30°+sin45°+tan60°===故填:.【点睛】解决此类题目的关键是熟记特殊角的三角函数值.17、.【解析】根据题意作出树状图,再根据概率公式即可求解.【详解】根据题意画树形图:共有6种等情况数,其中“A口进E口出”有一种情况,从“A口进E口出”的概率为;故答案为:.【点睛】此题主要考查概率的计算,解题的关键是依题意画出树状图.18、1.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明△CON∽△CHM,再利用相似三角形的性质可计算出ON的长.【详解】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为:1.【点睛】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键.三、解答题(共78分)19、(1);(2)【解析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=,∴BC=AB=2,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.20、(1)20;(2)作图见试题解析;(3).【分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.21、(1)详见解析;(2)不是;(3)【分析】(1)根据已知条件可知,根据对顶角相等可知,由此可证明;(2)根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)(3)由△ADP∽△BCP,可得,而∠APB与∠DPC为对顶角,则可证△APB∽△DPC,从而得,再根据即可求得AP的长.【详解】(1)证明:∵,∴;(2)点A、D、P的对应点依次为点B、C、P,对应点的连线不相交于一点,故与不是位似图形;(3)解:∵∴∵,∴,∴∴.【点睛】本题考查相似三角形的性质和判定,位似图形的定义.熟练掌握相似三角形的判定定理是解决此题的关键.22、(1)m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m,理由见解析.【解析】试题分析:(1)由于x的方程mx2+(m+2)x+=1有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于m的不等式,解不等式即可求解;(2)不存在符合条件的实数m.设方程mx2+(m+2)x+=1的两根分别为x1、x2,由根与系数关系有:x1+x2=-,x1•x2=,又+=,然后把前面的等式代入其中即可求m,然后利用(1)即可判定结果.试题解析:(1)由,得m>﹣1,又∵m≠1∴m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m.设方程两根为x1,x2则,解得m=﹣2,此时△<1.∴原方程无解,故不存在.23、(1)m=3;(2)①;②.【分析】(1)根据二次函数的对称轴公式可得关于m的方程,解方程即可求出结果;(2)①根据抛物线的平移规律解答即可;②根据二次函数的性质以及一次函数的性质,结合图象只要满足直线与y轴的交点的纵坐标大于抛物线与y轴交点的纵坐标解答即可.【详解】解:(1)∵的对称轴为直线,∴,解得:m=3;(2)①∵函数的表达式为y=x2-2x+1,即为,∴图象向右平移2个单位得到的新的函数图象的表达式为;②∵直线y=﹣2x+2t(t>m)与x轴交于点A,与y轴交于点B,∴A(t,0),B(0,2t),∵新的函数图象G的顶点为(3,0),与y的交点为(0,9),∴当线段AB与图象G只有一个公共点时,如图,2t>9,解得t>,故t的取值范围是t>.【点睛】本题考查了二次函数的图象及性质、抛物线的平移以及一次函数与二次函数的交点涉及的参数问题,熟练掌握二次函数的图象与性质,灵活应用数形结合的数学思想是解题关键24、(1)详见解析;(1)详见解析.【分析】(1)先确定抛物线的对称轴为直线x=1+,利用二次函数的性质得当m>1+时,y随x的增大而减小,从而可对(1)的结论进行判断;(1)设抛物线与x轴的两交的横坐标为x1、x1,则根据根与系数的关系得到x1+x1=,x1x1=,利用完全平方公式得到|x1﹣x1|===|1﹣|,然后m取时可对(1)的结论进行判断.【详解】解:(1)的结论正确.理由如下:抛物线的对称轴为直线,∵m<0,∴当m>1+时,y随x的增大而减小,而1>1+,∴当m<0时,函数y=mx1﹣(1m+1)x+1在x>1时,y随x的增大而减小;(1)的结论错误.理由如下:设抛物线与x轴的两交的横坐标为x1、x1,则x1+x1=,x1x1=,|x1﹣x1|=====|1﹣|,而m>0,若m取时,|x1﹣x1|=3,∴当m>0时,函数y=mx1﹣(1m+1)x+1图象截x轴上的线段长度小于1不正确.【点睛】本题考查了二次函数的增减性问题,与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.25、(1)88°;(2)详见解析;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论