2022年重庆市外国语学校数学九年级第一学期期末经典试题含解析_第1页
2022年重庆市外国语学校数学九年级第一学期期末经典试题含解析_第2页
2022年重庆市外国语学校数学九年级第一学期期末经典试题含解析_第3页
2022年重庆市外国语学校数学九年级第一学期期末经典试题含解析_第4页
2022年重庆市外国语学校数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.02.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是()A. B. C. D.3.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球4.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.5.如图,是正内一点,若将绕点旋转到,则的度数为()A. B.C. D.6.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.7.在平面直角坐标系中,抛物线与轴交于点,与轴交于点,则的面积是()A.6 B.10 C.12 D.158.已知y关于x的函数表达式是,下列结论不正确的是()A.若,函数的最大值是5B.若,当时,y随x的增大而增大C.无论a为何值时,函数图象一定经过点D.无论a为何值时,函数图象与x轴都有两个交点9.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.310.用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为()A.最多需要8块,最少需要6块 B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块 D.最多需要9块,最少需要7块11.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm12.下列事件是必然事件的是()A.半径为2的圆的周长是2 B.三角形的外角和等于360°C.男生的身高一定比女生高 D.同旁内角互补二、填空题(每题4分,共24分)13.如图,矩形对角线交于点为线段上一点,以点为圆心,为半径画圆与相切于的中点交于点,若,则图中阴影部分面积为________________.14.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.15.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+1c>0;④若点A(﹣3,y1)、点B(,y1)、点C(,y3)在该函数图象上,则y1<y3<y1;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有_______个.16.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.17.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.18.两个相似三角形的面积比为,其中较大的三角形的周长为,则较小的三角形的周长为__________.三、解答题(共78分)19.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).20.(8分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.21.(8分)如图,在平面直角坐标系中,点的坐标为,点在第一象限,,点是上一点,,.(1)求证:;(2)求的值.22.(10分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中部分所对应的扇形圆心角度数;(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.23.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.24.(10分)已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.25.(12分)解方程:3x2﹣4x+1=1.(用配方法解)26.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写下表.时间第一个月第二个月每套销售定价(元)销售量(套)(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少;(3)求当4≤x≤6时第二个月销售利润的最大值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,

解得:m=1.

故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.2、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;

②在等圆或同圆中,长度相等的两条弧是等弧,假命题;

③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.

故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).3、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.4、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.5、B【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【详解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选:B.【点睛】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.6、A【解析】直接利用锐角三角函数关系得出sinB的值.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.7、A【分析】根据题意,先求出点A、B、C的坐标,然后根据三角形的面积公式,即可求出答案.【详解】解:∵抛物线与轴交于点,∴令,则,解得:,,∴点A为(1,0),点B为(,0),令,则,∴点C的坐标为:(0,);∴AB=4,OC=3,∴的面积是:=;故选:A.【点睛】本题考查了二次函数与坐标轴的交点,解题的关键是熟练掌握二次函数的性质,求出抛物线与坐标轴的交点.8、D【分析】将a的值代入函数表达式,根据二次函数的图象与性质可判断A、B,将x=1代入函数表达式可判断C,当a=0时,y=-4x是一次函数,与x轴只有一个交点,可判断D错误.【详解】当时,,∴当时,函数取得最大值5,故A正确;当时,,∴函数图象开口向上,对称轴为,∴当时,y随x的增大而增大,故B正确;当x=1时,,∴无论a为何值,函数图象一定经过(1,-4),故C正确;当a=0时,y=-4x,此时函数为一次函数,与x轴只有一个交点,故D错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.9、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.10、C【分析】易得这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】由主视图可得:这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多为3+4+1=8个最少为2+4+1=7个故选C【点睛】本题考查由三视图判断几何体,熟练掌握立体图形的三视图是解题关键.11、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.12、B【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件),可判断出正确答案.【详解】解:A、半径为2的圆的周长是4,不是必然事件;B、三角形的外角和等于360°,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁内角互补,不是必然事件;故选B.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、【分析】连接BG,根据切线性质及G为中点可知BG垂直平分AO,再结合矩形性质可证明为等边三角形,从而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三边关系求出AB,然后求出和扇形BEF的面积,两者相减即可得到阴影部分面积.【详解】连接BG,由题可知BG⊥OA,∵G为OA中点,∴BG垂直平分OA,∴AB=OB,∵四边形ABCD为矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即为等边三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案为:.【点睛】本题考查了扇形面积的计算,矩形的性质,含30°角的直角三角形的三边关系以及等边三角形的判定与性质,较为综合,需熟练掌握各知识点.14、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.15、2【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由对称轴可知:x=−=1,∴4a+b=0,故①正确;②由图可知:x=−2时,y<0,∴9a−2b+c<0,即9a+c<2b,故②错误;③令x=−1,y=0,∴a−b+c=0,∵b=−4a,∴c=−5a,∴8a+7b+1c=8a−18a−10a=−20a由开口可知:a<0,∴8a+7b+1c=−20a>0,故③正确;④点A(﹣2,y1)、点B(,y1)、点C(,y2)在该函数图象上,由抛物线的对称性可知:点C关于直线x=1的对称点为(,y2),∵−2<<,∴y1<y1<y2故④错误;⑤由题意可知:(−1,0)关于直线x=1的对称点为(5,0),∴二次函数y=ax1+bx+c=a(x+1)(x−5),令y=−2,∴直线y=−2与抛物线y=a(x+1)(x−5)的交点的横坐标分别为x1,x1,∴x1<−l<5<x1故⑤正确;故正确的结论有2个答案为:2.【点睛】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.16、(0,).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.17、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上AC的长即可求得树AB的高.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【点睛】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.18、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三角形的周长为∴较小的三角形的周长为故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【详解】(1)A(1,0)关于x=﹣1的对称点是(﹣3,0),则B的坐标是(﹣3,0)根据题意得:解得则直线的解析式是y=x+3;根据题意得:解得:则抛物线的解析式是y=﹣x2﹣2x+3(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得,y=−1+3=2,∴M(−1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(−1,2);(3)如图,设P(−1,t),又∵B(−3,0),C(0,3),∴BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2−6t+10解之得:t=−2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2−6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2−6t+10=18解之得:t1=,t2=;∴P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【点睛】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.20、(1),(2)随的增大而减小时.【解析】(1)把,代入解析式,解方程组求出a、b的值即可;(2)根据(1)中所得解析式可得对称轴,a>0,在对称轴左侧y随的增大而减小根据二次函数的性质即可得答案.【详解】(1)∵抛物线经过点,.∴解得∴这条抛物线所对应的函数表达式为.(2)∵抛物线的对称轴为直线,∵,∴图象开口向上,∴y随的增大而减小时x<1.【点睛】本题考查待定系数法确定二次函数解析式及二次函数的性质,a>0,开口向上,在对称轴左侧y随的增大而减小,a<0,开口向下,在对称轴右侧y随的增大而减小,熟练掌握二次函数的图像和性质是解题关键.21、(1)证明见解析;(2)cos∠ABO=【分析】(1)过点作点,在中,利用锐角三角函数的知识求出BD的长,再用勾股定理求出OD、AB、BC的长,所以AB=BC,从而得到∠ACB=∠BAO,然后根据两角分别相等的两个三角形相似解答即可;(2)在中求出∠BAO的余弦值,根据∠ABO=∠BAO可得答案.【详解】(1)在平面直角坐标系中,点的坐标为,,,,∠OAB=∠ABO,过点作点,则,在中,,,,,在中,,,∴CD=6-2=4,∴BC=,∴AB=BC,∴∠ACB=∠BAO,∴∠ACB=∠ABO=∠BAO,又∵∠BAC=∠OAB,(两角分别相等的两个三角形相似);(2)在中,,∵∠ABO=∠BAO,,即的值为.【点睛】本题考查了坐标与图形的性质,解直角三角形,等腰三角形的判定与性质,勾股定理等知识,正确作出辅助线是解答本题的关键.22、(1)50;(2)详见解析;(3);(4)【分析】(1)根据D的人数除以所占的百分比即可的总人数;(2)根据C的百分比乘以总人数,可得C的人数,再根据总人数减去A、B、C、D、F,便可计算的E的人数,分别在直方图上表示即可.(3)根据直方图上E的人数比总人数即可求得的E百分比,再计算出圆心角即可.(4)画树状图统计总数和来自同一班级的情况,再计算概率即可.【详解】解:(1)总人数为人,答:两个班共有女生50人;(2)C部分对应的人数为人,部分所对应的人数为;频数分布直方图补充如下:(3)扇形统计图中部分所对应的扇形圆心角度数为;(4)画树状图:共有20种等可能的结果数,其中这两人来自同一班级的情况占8种,所以这两人来自同一班级的概率是.【点睛】本题是一道数据统计的综合性题目,难度不大,这类题目,往往容易得分,应当熟练的掌握.23、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;

(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;

(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.24、(1)(2)P点坐标(﹣5,﹣),Q点坐标(3,﹣)(3)M点的坐标为(﹣,),(﹣3,1)【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.试题解析:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论