版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶2.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)3.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1054.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是()A. B. C. D.5.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和56.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.187.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°8.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.9.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.10.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.二、填空题(每小题3分,共24分)11.已知,其相似比为2:3,则他们面积的比为__________.12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.13.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.14.分解因式:__________.15.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.16.已知△ABC,D、E分别在AC、BC边上,且DE∥AB,CD=2,DA=3,△CDE面积是4,则△ABC的面积是______17.已知的半径点在内,则_________(填>或=,<)18.已知二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,则b的值为_____.三、解答题(共66分)19.(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.20.(6分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.21.(6分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?22.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.23.(8分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.24.(8分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)25.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.26.(10分)如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.(1)若从中任意抽取--张,求抽到锐角卡片的概宰;(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.
参考答案一、选择题(每小题3分,共30分)1、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.2、C【解析】试题分析:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1).故选C.考点:平行投影.3、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.4、A【分析】首先根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:,该几何体的侧面积为:,∴总表面积为:,故选:A.【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.5、B【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1)2-4,对称轴是:x=-1∵a=-1>0,∴x>-1时,y随x的增大而增大,x<-1时,y随x的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1)2-4=5,x=-1时y有最小值,是-4,故选B.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.6、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.7、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【点睛】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.8、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.9、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.二、填空题(每小题3分,共24分)11、4:1.【分析】根据相似三角形面积的比等于相似比的平方,从而可得答案.【详解】解:∵两个相似三角形的相似比为,∴这两个相似三角形的面积比为,故答案为:.【点睛】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.12、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.13、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.14、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.15、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,
由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,
∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.【点睛】本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.16、25【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积.【详解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面积是4,∴,即,∴△ABC的面积为25.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.17、<【分析】根据点与圆的位置关系,即可求解.【详解】解:的半径为点在内,.故答案为:.【点睛】本题考查的是点与圆的位置关系.18、【分析】根据二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b的值.【详解】∵二次函数y=x2﹣bx=(x)2,当2≤x≤5时,函数y有最小值﹣1,∴当5时,x=5时取得最小值,52﹣5b=﹣1,得:b(舍去),当25时,x时取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),当2时,x=2时取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案为:.【点睛】本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、(2);(2)见解析.【分析】(1)直接利用概率公式求解即可;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小明抽中“唐诗”且小红抽中“宋词”的结果数及小明和小红都没有抽到“三字经”的结果数,然后根据概率公式求解.【详解】解:(1)他从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=.(2)画树状图为:共有12种等可能的结果数;所以恰好小明抽中“唐诗”且小红抽中“宋词”的概率=小明和小红都没有抽到“三字经”的概率==【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、(1)y=(x>0);(2)△OAB的面积为2.【分析】(1)将A点的横坐标代入正比例函数,可求出A点坐标,再将A点坐标代入反比例函数求出k,即可得解析式;(2)过A点作AN⊥OM,垂足为点N,则AN∥PM,根据平行线分线段成比例得,进而求出M点坐标,将M点的横坐标分别代入反比例函数和正比例函数,求出B、P的坐标,再利用三角形面积公式求出△POM、△BOM的面积,作差得到△BOP的面积,最后根据S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【详解】解:(1)A点在正比例函数y=x的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=(x>0),得,解得k=1.∴反比例函数的表达式为y=(x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M点的坐标为(1,0)将x=1代入y=,得y==1,∴点B的坐标为(1,1)将x=1代入y=x,得y==9,∴点P的坐标为(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面积为2.【点睛】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.21、每辆车需降价2万元【分析】设每辆车需降价万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价万元,则日销售量为辆,依题意,得:,解得:,,∵要尽快减少库存,∴.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.22、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.【解析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)根据圆周角定理求出∠DOE的度数,再根据弧长公式进行计算即可;(3)当∠F的度数是36°时,可以得到∠ABF=90°,由此即可得BF与⊙O相切.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.【点睛】本题考查了圆周角定理、切线的判定、弧长公式等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.23、(1)80人(2)见解析(3)375【分析】(1)根据条形统计图和扇形统计图可知,选择文学鉴赏的学生16人,占总体的20%,从而可以求得调查的学生总人数;(2)根据3D打印的百分比和(1)中求得的调查的学生数,可以求得选择3D打印的有多少人,进而可以求得选择数学思维的多少人,从而可以将条形统计图补充完整;(3)根据调查的选择红船课程的学生所占的百分比,即可估算出全校选择体育类的学生人数.【详解】解:(1)16÷20%=80人;(2)如图所示;(3)=375(人).【点睛】本题考查了条形统计图、样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24、(1)证明见解析;(2)2;(3).【分析】(1)连接,由BC是圆的切线得到,利用内错角相等,半径相等,证得;(2)过点作,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度网络游戏开发运营合同
- 2024年度塔吊操作培训合同
- 2024合同书CIF合同书
- 2024全新血液透析培训
- 2024年家具加盟授权合同
- 2024国际货物买卖中检验检疫服务合同
- 公司管理年终工作总结
- 企业办公室励志标语8篇
- 2024年度××智能穿戴设备研发生产合同
- 2024年度钢材物流配送合同
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- CJT 497-2016 城市轨道交通桥梁伸缩装置
- 潍坊2024年山东潍坊市人力资源和社会保障局所属事业单位招聘笔试历年典型考题及考点附答案解析
- 软件质量保证报告
- 中职学生学情分析
- 钢管单元工程质量评定表
- 现场监护人培训
- 电大财务大数据分析编程作业3
- Q∕GDW 1480-2015 分布式电源接入电网技术规定
- 知识图谱智慧树知到期末考试答案章节答案2024年浙江大学
- 2024年长春医学高等专科学校单招职业技能测试题库及答案解析
评论
0/150
提交评论