版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变 B.一直变大C.先变小再变大 D.先变大再变小2.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d3.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是()A.①②③ B.②③④ C.①③④ D.①②③④4.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C. D.5.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动()A.不变 B.变长 C.变短 D.先变短再变长6.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是()A. B. C. D.7.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°8.点是反比例函数的图象上的一点,则()A. B.12 C. D.19.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有()①②③④∽A.1个 B.2个 C.3个 D.4个10.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合二、填空题(每小题3分,共24分)11.如图,在中,,为边上的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则的长为____________.12.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.13.点在线段上,且.设,则__________.14.比较大小:_____1.(填“>”、“=”或“<”)15.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.16.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是__(用“<”连接)17.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.18.一元二次方程的根是.三、解答题(共66分)19.(10分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.20.(6分)二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)若方程有两个不相等的实数根,求的取值范围;(3)若抛物线与直线相交于,两点,写出抛物线在直线下方时的取值范围.21.(6分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.22.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.23.(8分)如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.24.(8分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.25.(10分)如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.26.(10分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD连接CE,DE.(1)求证:四边形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的长
参考答案一、选择题(每小题3分,共30分)1、D【解析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP为半径的⊙O,易知EF=2FH=2,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小.【详解】如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2,观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【点睛】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.2、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.3、B【分析】①由于与不一定相等,根据圆周角定理可判断①;
②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;
③先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;
④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;【详解】解:①错误,假设,则,,,显然不可能,故①错误.②正确.连接.是切线,,,,,,,,,故②正确.③正确.,,,,,,是直径,,,,,,,点是的外心.故③正确.④正确.连接.,,,,,,,,可得,,,,可得,.故④正确,故选:.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.4、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.∵反比例函数中k=﹣a<1,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<1,﹣c<1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.5、A【分析】由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【详解】解:∵E,F分别是AM,MC的中点,
∴,
∵A、C是定点,
∴AC的的长恒为定长,
∴无论M运动到哪个位置EF的长不变,
故选A.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半.6、C【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【详解】∵将△ABC绕点A逆时针旋转,旋转角为α,
∴AB=AD,∠BAD=α,
∴∠B=
故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.7、D【解析】试题分析:如图,连接OA,则∵OA=OB=OC,∴∠BAO=∠ABO=32°,∠CAO=∠ACO=38°.∴∠CAB=∠CAO+∠BAO=1.∵∠CAB和∠BOC上同弧所对的圆周角和圆心角,∴∠BOC=2∠CAB=2.故选D.8、A【解析】将点代入即可得出k的值.【详解】解:将点代入得,,解得k=-12,故选:A.【点睛】本题考查反比例函数图象上点,若一个点在某个函数图象上,则这个点一定满足该函数的解析式.9、B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,∴∵是的中点,∴BE=CE∴CE2=AB•CF,∴②正确;
∵BE=CE=BC,∴CF=BE=CD,故③错误;∵∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正确.
∴②与④正确.
∴正确结论的个数有2个.
故选:B.【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.10、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选B.考点:中心对称.二、填空题(每小题3分,共24分)11、【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,则GF=10,则AF=16,AC=20,在Rt△ACF中利用勾股定理可求出CF的值.【详解】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,∴GF=BG=10,则AF=26-10=16,AC=2×10=20,∵在Rt△ACF中,∠CFA=90°,∴即故答案是:1.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.12、【解析】∵点P的坐标为(3,4),∴OP=,∴.故答案为:.13、【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).故答案为:.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.14、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15、1【分析】直接利用扇形弧长公式代入求出即可.【详解】解:扇形的半径是1,弧长是,,即,解得:,此扇形所对的圆心角为:.故答案为:1.【点睛】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键.16、y3<y1=y1.【分析】先将二次函数的一般式化成顶点式,从而求出抛物线的对称轴,然后根据二次函数图象的对称性和增减性判断即可.【详解】∵y=x1+x+1=(x+)1+,∴图象的开口向上,对称轴是直线x=﹣,A(﹣3,y1)关于直线x=﹣的对称点是(1,y1),∴y1=y1,∵﹣<<1,∴y3<y1,故答案为y3<y1=y1.【点睛】此题考查的是二次函数的增减性,掌握二次函数图象对称轴两侧的对称性和增减性是解决此题的关键.17、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.18、【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.三、解答题(共66分)19、(1)(2),【解析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1)依题意,得,解得且;(2)∵是小于9的最大整数,∴此时的方程为,解得,.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.20、(1),;(2);(3)或【分析】(1)根据图象可知x=1和3是方程的两根;(2)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围;(3)根据题意作图,由图象即可得到抛物线在直线下方时的取值范围.【详解】(1)∵函数图象与轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为,;(2)∵二次函数的顶点坐标为(2,2),∴若方程有两个不相等的实数根,则的取值范围为.(3)∵抛物线与直线相交于,两点,由图象可知,抛物线在直线下方时的取值范围为:或.【点睛】本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.21、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),∴点D(,-3)连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m),AQ为的半径则AQ²=OQ²+OA²,6²=m²+3²即∴综上所述,点坐标为故存在点Q,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.22、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析:(2)CE=1.【分析】(1)连接AD,如图,先证明得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由得到OD⊥BC,则CF=BF,所以OF=AC=,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵,∴OD⊥BC,∴CF=BF,∴OF=AC=,∴DF=﹣=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上半年贵州茅台保健酒业保健酒业销售公司仁帅酒业招聘49名易考易错模拟试题(共500题)试卷后附参考答案
- 2025年上半年贵州省毕节市赫章县招聘事业单位22人(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年上半年贵州毕节织金县事业单位招聘工作人员拟聘用重点基础提升(共500题)附带答案详解-1
- 2025年上半年贵州毕节市人民政府办公室市直单位青年就业见习招募53人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年上半年贵州台江县事业单位引进急需紧缺人才拟聘重点基础提升(共500题)附带答案详解-1
- 2025年上半年自贡市国投建筑产业发展限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年度铜门行业展会参展与赞助合作协议3篇
- 2025年校企共同培育国际型人才合作协议书3篇
- 2025年公共建筑租赁合同
- 副校长述职报告我将一如既往的坚持以身作则、科研兴校、不断提高我的管理能力,不断提高我的教学技艺水平
- 2025年下半年贵州高速公路集团限公司统一公开招聘119人高频重点提升(共500题)附带答案详解
- 资产评估服务房屋征收项目测绘实施方案
- 2025年经济形势会议讲话报告
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- 国家安全责任制落实情况报告3篇
- 2024年度顺丰快递冷链物流服务合同3篇
- 六年级下册【默写表】(牛津上海版、深圳版)(汉译英)
- 合同签订培训
- 电工基础知识培训课程
- 铁路基础知识题库单选题100道及答案解析
- 金融AI:颠覆与重塑-深化理解AI在金融行业的实践与挑战
评论
0/150
提交评论