汕头市金平区2022年数学九上期末学业水平测试试题含解析_第1页
汕头市金平区2022年数学九上期末学业水平测试试题含解析_第2页
汕头市金平区2022年数学九上期末学业水平测试试题含解析_第3页
汕头市金平区2022年数学九上期末学业水平测试试题含解析_第4页
汕头市金平区2022年数学九上期末学业水平测试试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.2.“2020年的6月21日是晴天”这个事件是()A.确定事件 B.不可能事件 C.必然事件 D.不确定事件3.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.π B.4π C.π D.π4.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm5.用配方法解一元二次方程时,方程变形正确的是()A. B. C. D.6.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位7.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定()A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相离C.与x轴相离,与y轴相切 D.与x轴相离,与y轴相离8.如图,MN所在的直线垂直平分线段AB,利用这样的工具,可以找到圆形工件的圆心,如果使用此工具找到圆心,最少使用次数为().A.1 B.2 C.3 D.49.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.210.若是方程的两根,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.12.如图,中,,,,__________.13.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=__.14.若,分别是一元二次方程的两个实数根,则__________.15.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.16.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.17.如果记,表示当时的值,即;表示当时的值,即;表示当时,的值,即;那么______________.18.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.三、解答题(共66分)19.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.20.(6分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?21.(6分)计划开设以下课外活动项目:A一版画、B一机器人、C一航模、D一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是°;(2)请你将条形统计图补充完整;(3)若该校学生总数为1500人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数22.(8分)计算:|2﹣|+()﹣1+﹣2cos45°23.(8分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.24.(8分)如图,在中,,,,点从点开始沿边向点以的速度移动,同时,点从点开始沿边向点以的速度移动(到达点,移动停止).(1)如果,分别从,同时出发,那么几秒后,的长度等于?(2)在(1)中,的面积能否等于?请说明理由.25.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)26.(10分)如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,(1)求△ABC的面积;(2)求tan∠DBC的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.2、D【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.【详解】“2020年的6月21日是晴天”这个事件是随机事件,属于不确定事件,故选:D.【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.3、D【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.【详解】解:∵,∴,∴,∵,,∴,,∴,∴阴影部分的面积为,

故选:D.【点睛】本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.4、A【解析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R,根据题意得2π•5,解得R=1.即圆锥的母线长为1cm,∴圆锥的高为:5cm.故选:A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5、B【详解】,移项得:,两边加一次项系数一半的平方得:,所以,故选B.6、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7、B【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【详解】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选B.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.8、B【分析】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,故最少使用2次就可以找到圆形工件的圆心.【详解】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,如图所示,使用2次即可找到圆心O,故选B.【点睛】本题考查利用垂径定理确定圆心,熟练掌握弦的垂直平分线经过圆心是解题的关键.9、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【点睛】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、D【解析】试题分析:x1+x2=-=6,故选D考点:根与系数的关系二、填空题(每小题3分,共24分)11、【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、18【分析】根据勾股定理和三角形面积公式得,再通过完全平方公式可得.【详解】因为中,,,,所以所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案为:18【点睛】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.13、1【分析】根据白球的概率公式列出方程求解即可.【详解】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据概率公式知:P(白球)=,解得:n=1,故答案为:1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P.14、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,∴故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题15、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,

则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、.【分析】根据概率公式求概率即可.【详解】图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.17、【分析】观察前几个数,,,,依此规律即可求解.【详解】∵,,∴,∵,,∴,,∴,∵,∴2019个1.故答案为:.【点睛】此题考查了分式的加减运算法则.解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.18、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.三、解答题(共66分)19、(1)x=17;(2)当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【分析】(1)根据题意列出方程,解出方程即可;(2)设苗圃园的面积为y平方米,用x表达出y,得到二次函数表达式,根据二次函数的性质,求出面积的最大值,注意考虑是否符合实际情况.【详解】(1)解:根据题意得:,解得:或,∵,∴,∴(2)解:设苗圃园的面积为y平方米,则y=x(40﹣2x)=﹣2x2+40x=∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=10时,即平行于墙的一边长是20米,20>18,不符题意舍去;∴当x=11时,y最大=198平方米;答:当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【点睛】本题主要考察一元二次方程的实际问题及二次函数的实际问题,解题的关键是能够列出方程或函数表达式,熟练运用二次函数的性质解决实际问题.20、(1)乙平均数为8,方差为0.8;(2)乙.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.21、(1)200;72(2)60(人),图见解析(3)1050人.【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、1【分析】根据绝对值、负次数幂、二次根式、三角函数的性质计算即可.【详解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【点睛】本题考查绝对值、负次数幂、二次根式、三角函数的计算,关键在于牢记相关基础知识.23、见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.24、(1)3秒后,的长度等于;(2)的面积不能等于.【分析】(1)由题意根据PQ=,利用勾股定理BP2+BQ2=PQ2,求出即可;(2)由(1)得,当△PQB的面积等于7cm2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设秒后,,,,∵∴解得:,(舍去)∴3秒后,的长度等于;(2)设秒后,,,又∵,,∴,,∴方程没有实数根,∴的面积不能等于.【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ的面积等于”,得出等量关系是解决问题的关键.25、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论