2023届河南省驻马店确山县联考八年级数学第一学期期末学业质量监测试题含解析_第1页
2023届河南省驻马店确山县联考八年级数学第一学期期末学业质量监测试题含解析_第2页
2023届河南省驻马店确山县联考八年级数学第一学期期末学业质量监测试题含解析_第3页
2023届河南省驻马店确山县联考八年级数学第一学期期末学业质量监测试题含解析_第4页
2023届河南省驻马店确山县联考八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若分式的值为0,则的值是()A.2 B.0 C. D.-22.能使成立的x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x>23.已知,为内一定点,上有一点,上有一点,当的周长取最小值时,的度数是A. B. C. D.4.满足下列条件的△ABC不是直角三角形的是()A.AC=1,BC=,AB=2 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:55.下列大学校徽主体图案中,是轴对称图形的是()A. B. C. D.6.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个7.下列命题:①若则;②等边三角形的三个内角都是;③线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.个 B.个 C.个 D.个8.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75° B.65° C.60° D.55°9.在下列长度的四根木棒中,能与,长的两根木棒钉成一个三角形的是()A. B. C. D.10.如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A. B. C. D.11.下列计算正确的是()A. B.C. D.12.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F,以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4) D.(4)(6)(1)二、填空题(每题4分,共24分)13.如图,的为40°,剪去后得到一个四边形,则__________度.14.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为______________.15.如图等边,边长为6,是角平分线,点是边的中点,则的周长为________.16.若的平方根是±3,则__________.17.点关于轴的对称点的坐标为______.18.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.三、解答题(共78分)19.(8分)已知:在平面直角坐标系中,点为坐标原点,的顶点的坐标为,顶点在轴上(点在点的右侧),点在上,连接,且.(1)如图1,求点的纵坐标;(2)如图2,点在轴上(点在点的左侧),点在上,连接交于点;若,求证:(3)如图3,在(2)的条件下,是的角平分线,点与点关于轴对称,过点作分别交于点,若,求点的坐标.20.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?21.(8分)如图,(1)画出关于轴对称的图形.(2)请写出点、、的坐标:(,)(,)(,)22.(10分)解方程(1)(2)23.(10分)解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且∠A=∠D+∠CED,求证:AB∥CD;(2)如图2,在正方形ABCD中,AB=8,BE=6,DF=1.①试判断△AEF的形状,并说明理由;②求△AEF的面积.24.(10分)先化简,再求值.,其中x满足.25.(12分)如图,在中,,点在内,,,点在外,,.(1)求的度数;(2)判断的形状并加以证明;(3)连接,若,,求的长.26.已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据分式的值为0的条件:分子=0且分母≠0,列出方程和不等式即可求出x的值.【详解】解:∵分式的值为0∴解得:故选A.【点睛】此题考查的是已知分式的值为0,求分式中字母的值,掌握分式的值为0的条件是解决此题的关键.2、D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:,解得:x>1.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.3、C【分析】设点关于、对称点分别为、,当点、在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.【详解】分别作点关于、的对称点、,连接、、,交、于点、,连接、,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:.【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.4、D【分析】根据勾股定理的逆定理可判定即可.【详解】解:A、∵12+()2=4,22=4,∴12+()2=22,∴AC=1,BC=,AB=2满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.【点睛】本题主要考查直角三角形的判定,解题关键是掌握直角三角形的判定方法.5、C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.6、A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.7、B【分析】先写出各命题的逆命题,然后根据绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理逐一判断即可.【详解】解:①“若则”的逆命题为“若,则”,当,则,故①的逆命题为假命题;②“等边三角形的三个内角都是”的逆命题为“三个内角都是60°的三角形是等边三角形”,该命题为真命题,故②的逆命题为真命题;③“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端点距离相等的点在这条线段的垂直平分线上”,该命题为真命题,故②的逆命题为真命题;综上:有2个符合题意故选B.【点睛】此题考查的是写一个命题的逆命题、绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理,掌握绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理是解决此题的关键.8、A【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【详解】解:∵AB∥CD,∴∠B=180°-∠C=180°-60°=120°,∵五边形ABCDE内角和为(5-2)×180°=540°,∴在五边形ABCDE中,∠E=540°-135°-120°-60°-150°=1°.故图中x的值是1.故选A.【点睛】本题主要考查了平行线的性质,多边形内角和定理,解决本题的关键是对基础知识的熟练掌握及综合运用.9、B【分析】首先设第三根木棒长为xcm,根据三角形的三边关系定理可得9−4<x<9+4,计算出x的取值范围,然后可确定答案.【详解】设第三根木棒长为xcm,由题意得:9−4<x<9+4,5<x<13,故选B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.10、A【解析】∵直线l从点B开始沿着线段BD匀速平移到D,∴在B点时,EF的长为0,在A点长度最大,到D点长为0,∴图象A符合题意,故选A.11、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.12、C【解析】试题解析:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.故选C.二、填空题(每题4分,共24分)13、1;【分析】根据三角形内角和为180°,得出的度数,再根据四边形的内角和为360°,解得的度数.【详解】根据三角形内角和为180°,得出,再根据四边形的内角和为360°,解得故答案为1.【点睛】本题考查了多边形内角和的公式,利用多边形的内角和,去求其他角的度数.14、4.3×10-5【解析】解:0.000043=.故答案为.15、6+【分析】由等腰三角形的三线合一的性质得到BD=CD,由勾股定理求出AD,由直角三角形斜边上的中线的性质求出DE,即可求出的周长.【详解】解:∵AB=6,是角平分线,∴BD=CD=3,∴AD===,∵点是边的中点,∴AE=3∴DE=AB=3∴的周长=AD+AE+DE=6+故答案为6+.【点睛】此题主要考查了等腰三角形的性质,勾股定理,,直角三角形斜边上的中线的性质,求出DE和AD的长是解决问题的关键..16、1【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a.【详解】解:∵2a-1的平方根为±3,

∴(±3)2=2a-1,

解得a=1.

故答案为:1.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17、【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.18、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.三、解答题(共78分)19、(1)点的纵坐标为1;(1)证明见解析;(3)点的坐标为.【分析】(1)由得出,然后通过等量代换得出,则有,进而有,则点C的纵坐标可求;(1)通过推导出,然后求出,则利用含30°的直角三角形的性质即可证明结论;(3)连接,过点作交轴于点,先推出,然后通过垂直和角度之间的代换得出则有,然后进一步,再因为得出的值,则可求出,利用即可求出的值,则点E的坐标可求.【详解】(1)如图,过点作于点又∴点的纵坐标为1.(1)又(3)如图,连接,过点作交轴于点又∵∵点与点关于轴对称,点在轴上∵点在轴上,且在点的上方.∴点的坐标为.【点睛】本题主要考查等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质,掌握等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质是解题的关键,第(3)问有一定的难度,主要是在于辅助线的作法.20、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得

,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.21、(1)见解析;(2)(3,2)(4,-3)(1,-1)【分析】(1)根据对称的特点,分别绘制A、B、C的对应点,依次连接对应点得到对称图形;(2)根据对称图形读得坐标.【详解】(1)图形如下:(2)根据图形得:(3,2)(4,-3)(1,-1)【点睛】本题考查绘制轴对称图形,注意,绘制轴对称图形实质就是绘制对称点,然后将对称点依次连接即为对称图形.22、(1)原分式方程的解为;(2)原分式方程的解为.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【详解】(1)解:两边同乘,得解得检验:当时,所以,原分式方程的解为(2)解:两边同乘,得解得检验:当时,所以,原分式方程的解为.【点睛】本题考查了解分式方程,注意要检验方程的根.23、(1)详见解析;(2)①△AEF是直角三角形,理由详见解析;②2.【分析】(1)延长AC至F,证明∠FCD=∠A,则结论得证;(2)①延长AF交BC的延长线于点G,证明△ADF≌△GCF,可得AF=FG,然后求出AE=EG,由等腰三角形的性质可得△AEF是直角三角形;②根据S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF进行计算即可.【详解】解:(1)延长AC至F,如图1,∵∠FCD=∠CED+∠D,∠A=∠D+∠CED,∴∠FCD=∠A,∴AB∥CD;(2)①如图2,延长AF交BC的延长线于点G,∵正方形ABCD中,AB=8,DF=1,∴DF=CF=1,∵∠D=∠FCG=90°,∠AFD=∠CFG,∴△ADF≌△GCF(ASA),∴AF=FG,AD=GC=8,∵AB=8,BE=6,∴AE===10,CE=2,∵EG=CE+CG=2+8=10,∴AE=EG,∴EF⊥AG,∴△AEF是直角三角形;②∵AB=AD=8,DF=CF=1,BE=6,CE=2,S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF,=,=61-21-16-1,=2.【点睛】本题是四边形综合题,考查了平行线的判定,正方形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质及三角形的面积计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.24、,-5【分析】先将分式进行化简后,将变形成,代入即可.【详解】解:原式∴原式=-5【点睛】本题考查了分式的化简求值,掌握分式化简是解题的关键.25、(1)150°;(2)△ABE是等边三角形,理由见解析;(3)1【分析】(1)首先证明△DBC是等边三角形,推出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论