2023届广东省佛山市南海中学数学八年级上册期末经典试题含解析_第1页
2023届广东省佛山市南海中学数学八年级上册期末经典试题含解析_第2页
2023届广东省佛山市南海中学数学八年级上册期末经典试题含解析_第3页
2023届广东省佛山市南海中学数学八年级上册期末经典试题含解析_第4页
2023届广东省佛山市南海中学数学八年级上册期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.端午节期间,某地举行龙舟比赛甲、乙两支龙舟在比赛时路程米与时间分钟之间的函数图象如图所示根据图象,下列说法正确的是A.1分钟时,乙龙舟队处于领先B.在这次龙舟赛中,甲支龙舟队比乙支龙舟队早分钟到达终点C.乙龙舟队全程的平均速度是225米分钟D.经过分钟,乙龙舟队追上了甲龙舟队2.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=13.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半在作弧交数轴的正半轴于点M,则点M所表示的数为()A. B.-1 C.+1 D.24.一次函数的图象大致是()A. B. C. D.5.计算的值为().A. B.-2 C. D.26.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m27.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO8.已知直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是()A.x>2 B.x>3 C.x<2 D.x<39.生物学家发现了一种病毒,其长度约为0.0000000052mm,数据0.0000000052用科学记数法表示正确的是()A. B. C. D.10.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于12③作射线BM交AC于点D,则∠BDC的度数为().A.100° B.65° C.75° D.105°11.如果分式有意义,则x的取值范围是()A.x>3 B.x≠3 C.x<3 D.x>012.下列句子中,不是命题的是()A.三角形的内角和等于180度 B.对顶角相等C.过一点作已知直线的垂线 D.两点确定一条直线二、填空题(每题4分,共24分)13.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.14.若点A(a,﹣2)与点B(﹣3,b)关于x轴对称,则ab=_____.15.若点关于轴的对称点是,则的值是__________.16.如图,已知△ABC为等边三角形,BD为中线,延长BC至点E,使CE=CD=1,连接DE,则BE=________.17.=________.18.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是__________.三、解答题(共78分)19.(8分)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?20.(8分)某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A绕三棱柱侧面一周到顶点安装灯带,已知此三棱柱的高为4m,底面边长为1m,求灯带最短的长度.21.(8分)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在中,,,,,且,若是奇异三角形,求;(3)如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.①求证:是奇异三角形;②当是直角三角形时,求的度数.22.(10分)如图,在△ABC中,∠A=30°,∠B=60°(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.23.(10分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.24.(10分)如图,已知.(1)画出关于轴对称的;(2)写出关于轴对称的各顶点的坐标.25.(12分)小明在作业本上写了一个代数式的正确演算结果,但不小心被墨水污染了一部分,形式如下:求被墨水污染部分“”化简后的结果;原代数式的值能等于吗?并说明理由.26.如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)(2)计算△ABD的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】A、B、C根据图象解答即可;D先求乙队加速后,路程米与时间分钟之间的函数关系式,然后求出两条线段的交点坐标即可.【详解】A、在前2分钟时甲的图象一直在乙的图象上方,所以1分钟时,甲龙舟队处于领先位置,故选项A错误;

B、在这次龙舟赛中,乙支龙舟队比甲支龙舟队早分钟到达终点,故选项B错误;

C、乙龙舟队全程的平均速度是,故选项C错误;

D、设乙队加速后,路程米与时间分钟之间的函数关系式为,

根据题意得,解得,

故,;

设甲队路程米与时间分钟之间的函数关系式为,根据题意得,解得,故,

解方程组得,

所以经过分钟,乙龙舟队追上了甲龙舟队,故选项D正确.

故选:D.

【点睛】考查函数图象问题,解决图象问题时首先要判断准横轴和纵轴表示的意义,然后要读明白图象所表示的实际意义.2、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),

∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.3、B【分析】先利用勾股定理求出AC,根据AC=AM,求出OM,由此即可解决问题,【详解】∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴∴OM=﹣1,∴点M表示点数为﹣1.故选B.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.4、D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式,∵,∴直线斜向下,∵,∴直线经过y轴负半轴,图象经过二、三、四象限.故选:D.【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状.5、D【分析】由负整数指数幂的定义,即可得到答案.【详解】解:;故选:D.【点睛】本题考查了负整数指数幂,解题的关键是熟练掌握负整数指数幂的定义进行解题.6、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.7、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【详解】∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD(选项A正确),在Rt△ODP和Rt△OCP中,∴Rt△ODP≌Rt△OCP,∴OC=OD,∠CPO=∠DPO(选项B、D正确),只有选项C无法证明其正确.故选C.【点睛】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt△ODP≌Rt△OCP是解决本题的关键.8、C【分析】根据函数图象可得当y>0时,图象在x轴上方,然后再确定x的范围.【详解】直线y=kx+b中,当y>0时,图象在x轴上方,则不等式kx+b>0的解集为:x<2,故选:C.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案.9、C【分析】将原数写成a×10﹣n,原数小数点左边起第一个不为零的数字看小数点向右移动了几位,即为n的值.【详解】解:0.0000000052=5.2×10﹣9;故答案为C.【点睛】本题考查了绝对值小于1的科学计数法,确定a和n是解答本题的关键.10、D【解析】利用等腰三角形的性质结合三角形内角和定理得出∠ABC=∠C=50°,再利用角平分线的性质与作法得出即可.【详解】∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由题意可得:BD平分∠ABC,则∠ABD=∠CBD=25°,∴∠BDC的度数为:∠A+∠ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.11、B【分析】分式有意义的条件是分母不等于零,从而得到x﹣2≠1.【详解】∵分式有意义,∴x﹣2≠1.解得:x≠2.故选:B【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.12、C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.二、填空题(每题4分,共24分)13、AC=BC【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【详解】添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为AC=BC.【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14、1【分析】根据关于x轴对称的点的坐标变化,横坐标不变,纵坐标互为相反数求a,b的值,从而求解.【详解】解:∵点A(a,﹣2)与点B(﹣3,b)关于x轴对称,∴a=﹣3,b=2,∴ab=(﹣3)2=1.故答案为1.【点睛】熟练掌握关于坐标轴对称的点的坐标变化规律是本题的解题关键.点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b),关于原点对称的点的坐标为(-a,-b).15、-3【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出m、n的值,再计算m+n的值即可.【详解】∵点关于轴的对称点是,∴m=-2,n=-1,∴m+n=-2-1=-3.故答案为-3.【点睛】本题主要考查关于坐标轴对称的点的特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.16、1【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE的长.【详解】∵△ABC为等边三角形,

∴AB=BC=AC,

∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=1.故答案为:1.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.17、1.【解析】试题分析:先算括号里的,再开方..故答案是1.考点:算术平方根.18、a+1.【解析】试题解析:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+1),∵拼成的长方形一边长为a,∴另一边长是a+1.考点:图形的拼接.三、解答题(共78分)19、(1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【分析】(1)应用勾股定理求出AC的高度,即可求解;(2)应用勾股定理求出B′C的距离即可解答.【详解】(1)如图,在Rt△ABC中AB2=AC2+BC2,得AC==24(米)答:这个梯子的顶端距地面有24米.(2)由A'B'2=A'C2+CB'2,得B'C==15(米),∴BB'=B'C﹣BC=15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.20、5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:(m).答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.21、(1)真;(2);(3)①证明见解析;②或.【分析】(1)设等边三角形的边长为a,则a2+a2=2a2,即可得出结论;

(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇异三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出结论;

(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇异三角形;

②由△ACE是奇异三角形,得出AC2+CE2=2AE2,分两种情况,由直角三角形和奇异三角形的性质即可得出答案.【详解】(1)解:“等边三角形是奇异三角形”这个命题是真命题,理由如下:设等边三角形的一边为,则,∴符合奇异三角形”的定义.(2)解:∵,则①,∵是奇异三角形,且,∴②,由①②得:,,∴.(3)①证明:∵,∴,,∵,∴,∵,,∴,∴是奇异三角形.②由①可得是奇异三角形,∴,当是直角三角形时,由(2)得:或,当时,,即,∵,∴,∵,,∴,∴.当时,,即,∵,∴°,∵,,∴,∴,∴或.【点睛】本题是四边形综合题目,考查奇异三角形的判定与性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握奇异三角形的定义、等边三角形的性质和勾股定理是解题的关键.22、(1)作图见解析;(2)证明见解析.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【详解】解:(1)作图如下:

(2)证明:∵∠ABD=×60°=30°,∠A=30°∴∠ABD=∠A.∴AD=BD又∵AE=BE,∴△ADE≌△BDE(SAS)23、(1)见解析;(2)见解析【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD,∵AB=AC,∠BAC=90°,D为BC中点,∴AD⊥BC,BD=AD,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论