




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=12,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则BQ+QP的最小值是()A.4 B.5 C.6 D.72.“厉害了,中国华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based处理器—鲲鹏1.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A.米 B.米 C.米 D.米3.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.下列各式中,是分式的有(),,,﹣,,,.A.5个 B.4个 C.3个 D.2个5.已知三角形的三边长为6,8,10,则这个三角形最长边上的高为()A.2.4 B.4.8 C.9.6 D.106.的三个内角,,满足,则这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形7.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.8.已知点在第四象限,且点P到x轴的距离为3,到y轴的距离为6,则点P的坐标是()A. B. C. D.或9.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°10.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC二、填空题(每小题3分,共24分)11.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.12.在等腰中,若,则__________度.13.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是_____.14.如图,在中,,,是中点,则点关于点的对称点的坐标是______.15.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是_____.16.计算:=_______.17.将长方形纸片ABCD沿EF折叠,如图所示,若∠1=48°,则∠AEF=_____度.18.已知:在△ABC中,∠B=∠C,D,E分别是线段BC,AC上的一点,且AD=AE,(1)如图1,若∠BAC=90°,D是BC中点,则∠2的度数为_____;(2)借助图2探究并直接写出∠1和∠2的数量关系_____.三、解答题(共66分)19.(10分)精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.20.(6分)如图,三个顶点的坐标分别为.(1)请画出关于轴对称的,并写出的坐标;(2)在轴上求作一点,使的周长最小,并直接写出点的坐标.21.(6分)如图,已知等边△ABC中,点D在BC边的延长线上,CE平分∠ACD,且CE=BD,判断△ADE的形状,并说明理由.22.(8分)解方程组:(1)用代入消元法解:(2)用加减消元法解:23.(8分)如图,直线与x轴、y轴分别相交于点F,E,点A的坐标为(-6,0),P(x,y)是直线上的一个动点.(1)试写出点P在运动过程中,△OAP的面积S与x的函数关系式;(2)当点P运动到什么位置,△OAP的面积为,求出此时点P的坐标.24.(8分)如图1,在边长为3的等边中,点从点出发沿射线方向运动,速度为1个单位/秒,同时点从点出发,以相同的速度沿射线方向运动,过点作交射线于点,连接交射线于点.(1)如图1,当时,求运动了多长时间?(2)如图1,当点在线段(不考虑端点)上运动时,是否始终有?请说明理由;(3)如图2,过点作,垂足为,当点在线段(不考虑端点)上时,的长始终等于的一半;如图3,当点运动到的延长线上时,的长是否发生变化?若改变,请说明理由;若不变,求出的长.25.(10分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.26.(10分)()问题发现:如图①,与是等边三角形,且点,,在同一直线上,连接,求的度数,并确定线段与的数量关系.()拓展探究:如图②,与都是等腰直角三角形,,且点,,在同一直线上,于点,连接,求的度数,并确定线段,,之间的数量关系.
参考答案一、选择题(每小题3分,共30分)1、C【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.【详解】解:如图,作点P关于直线AD的对称点P′,连接QP′,△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=12,∠BAC=30°,∴BC=AB=6,∴PQ+BQ的最小值是6,故选:C.【点睛】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P、Q的位置是解题的关键.2、A【分析】先将7纳米写成0.000000007,然后再将其写成a×10n(1<|a|<10,n为整数)即可解答.【详解】解:∵1纳米米,7纳米=0.000000007米米.故答案为A.【点睛】本题主要考查了科学记数法,将原数写成a×10n(1<|a|<10,n为整数),确定a和n的值成为解答本题的关键.3、C【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】解:①是轴对称图形,故符合题意;②不是轴对称图形,故不符合题意;③是轴对称图形,故符合题意;④是轴对称图形,故符合题意.共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.4、B【解析】是多项式,是整式;是分式;是整式;是分式;是分式;,是整式;是分式,所以分式共有4个,故选B.5、B【分析】先根据勾股定理的逆定理判定它是直角三角形,再利用直角三角形的面积作为相等关系求斜边上的高.【详解】解:∵62+12=102,
∴这个三角形是直角三角形,
∴边长为10的边上的高为6×1÷10=4.1.
故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、C【分析】根据,设∠A=x,∠B=2x,∠C=3x,再根据内角和列出方程求解即可.【详解】解:设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180,解得:x=30,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC为直角三角形,故选C.【点睛】本题是对三角形内角和的考查,熟练掌握三角形内角和知识和准确根据题意列出方程是解决本题的关键.7、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.8、B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,
∵∠ACB=90°,AC=CD,
∴∠DAC=∠ADC=45°,
∵∠ACB=90°,DE⊥AB,
∴∠DEB=90°=∠ACB=∠DCM,
∵∠ABC=∠DBE,
∴∠CAB=∠CDM,
在△ACB和△DCM中∴△ACB≌△DCM(ASA),
∴AB=DM,
∵AB=2DE,
∴DM=2DE,
∴DE=EM,
∵DE⊥AB,
∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.10、D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,
∵AF=AF,∠1=∠2,AD=AB,
∴△ADF≌△ABF,
∴∠ADF=∠ABF,
又∵∠ABF=∠C=90°-∠CBF,
∴∠ADF=∠C,
∴FD∥BC.
故选B.
二、填空题(每小题3分,共24分)11、1【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,
∵全班共有50人,
∴90分及90分以上的人数为:50×28%=1(人).
故答案为:1.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.12、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.13、1【分析】首先利用单项式乘以多项式整理得出x3+(1﹣a)x进而根据展开式中只含有x3这一项得出1﹣a=0,求出即可.【详解】解:∵(x1﹣a)x+1x的展开式中只含有x3这一项,∴x3﹣ax+1x=x3+(1﹣a)x中1﹣a=0,∴a=1,故答案为:1.【点睛】本题考查单项式乘以多项式,熟练掌握运算法则是解题的关键.14、().【分析】过点A作AD⊥OB于D,然后求出AD、OD的长,从而得到点A的坐标,再根据中点坐标公式,求出点C的坐标,然后利用中点坐标公式求出点O关于点C的对称点坐标,即可.【详解】如图,过点A作AD⊥OB于D,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷=,∴点A(,),B(3,0),∵C是AB中点,∴点C的坐标为(),∴点O关于点C的对称点的坐标是:()故答案为:().【点睛】本题主要考查图形与坐标,掌握等腰直角三角形的三边之比以及线段中点坐标公式,是解题的关键.15、7.5【分析】根据中位数的定义先把数据从小到大的顺序排列,找出最中间的数即可得出答案.【详解】解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环).故答案为:7.5.【点睛】此题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16、1【分析】根据零指数幂,负整数指数幂以及绝对值的运算法则计算即可.【详解】,故答案为:1.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.17、114°【分析】根据折叠性质求出∠2和∠3,根据平行线性质求出∠AEF+∠2=180°,代入求出即可.【详解】根据折叠性质得出∠2=∠3=(180°-∠1)=×(180°-48°)=66°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=114°,故答案为:114°.【点睛】本题考查了矩形性质,平行线性质,折叠性质的应用,关键是求出∠2的度数和得出∠AEF+∠2=180°.18、1.5∠1=2∠2【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.【详解】解:(1)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∠BAC=90°,D是BC中点,∴∠BAD=45°,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∴∠2=1.5°;(2)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∠1=2∠2.【点睛】本题考查的知识点是三角形外角的性质,熟记外角的定义并能够灵活运用是解此题的关键.三、解答题(共66分)19、(1)10(2)165000;将苹果按大小分类包装销售更合算.【分析】(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利210000元列出方程,求出x的值,再进行检验即可求出答案;(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利210000元相比较即可.【详解】(1)设苹果进价为每千克x元,根据题意得:×2x+(1+10%)x(−20000)−300000=210000,解得:x=10,经检验x=10是原方程的解,答:苹果进价为每千克10元.(2)由(1)得,每个超市苹果总量为:=30000(千克),大、小苹果售价分别为20元和11元,则乙超市获利30000×(−10)=165000(元),∵甲超市获利210000元,∵210000>165000,∴将苹果按大小分类包装销售,更合算.【点睛】此题考查了分式方程的应用,关键是读懂题意,找出题目中的等量关系,根据两超市将苹果全部售完,其中甲超市获利210000元列出方程,解方程时要注意检验.20、(1)见解析;A1(1,1)、B1(4,2)、C1(3,4);(2)见解析;P点坐标为(﹣2,0).【分析】(1)先在坐标系中分别画出点A,B,C关于y轴的对称点,再连线,得到,进而写出、、的坐标即可;(2)先画出点B关于x轴的对称点B′,再连接B′A交x轴于点P,即为所求.【详解】(1)如图所示:△A1B1C1,即为所求,A1、B1、C1的坐标分别为A1(1,1)、B1(4,2)、C1(3,4);(2)如图所示,画出点B关于x轴的对称点B′,连接B′A交x轴于点P,此时的值最小,即△PAB的周长最小,此时P点坐标为:(﹣2,0).【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,通过点的轴对称,求两线段和的最小值,是解题的关键.21、△ADE是等边三角形,理由见解析【解析】先证明出△ABD≌△ACE,然后进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.【详解】△ADE是等边三角形,理由如下:∵△ABC是等边三角形,∴∠ACB=∠B=60°,AB=AC,∴∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,∵AB=AC,∠B=∠ACE,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠BAC+∠CAD=∠CAD+∠DAE又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.【点睛】本题主要考查了全等三角形的性质及判定与等边三角形性质及判定的综合运用,熟练掌握相关概念是解题关键.22、(1)(2)【分析】(1)先将②变形,然后利用代入消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可.【详解】解:(1)将②变形,得x=4+2y③将③代入①,得4(4+2y)+3y=5解得y=-1将y=-1代入③,解得x=2∴此二元一次方程组的解为;(2)②-①,得2x=-14解得x=-7将x=-7代入①,得-21-4y=11解得:y=-8∴此二元一次方程组的解为【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.23、(1)S=;(2)P(-2,)或(-14,)【分析】(1)设点P(x,y),将△OAP的面积表示出来,并分点P在第一、二象限和点P在第三象限两种情况进行讨论即可;(2)分别把S=代入(1)中两种情况下的函数关系式,求出点P的横坐标,再分别代入中可求出点P纵坐标.【详解】解:(1)∵P(x,y),∴P到x轴的距离为,∵点A的坐标为(-6,0),∴OA=6∴S△OAP=OA•令=0,解得x=-8,∴F(-8,0),①当点P在第一、二象限时,S=×6y,,∴S=x+18(x>-8),②当点P在第三象限时,S=×6(-y)∴S=-x-18(x<-8),∴点P在运动过程中,△OAP的面积S与x的函数关系式为:S=x+18(x>-8)或S=-x-18(x<-8),或写成S=;(2)当S=x+18(x>-8),△OAP的面积为,∴x+18=,解得x=-2,代入,得y=,∴P(-2,)当S=-x-18(x<-8),△OAP的面积为,∴-x-18=,解得x=-14,代入,得y=,∴P(-14,)综上所述,点P的坐标为P(-2,)或(-14,).【点睛】本题综合考查了三角形的面积,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.24、(1)运动了1秒;(2)始
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年现场水质仪器项目合作计划书
- 出借资金协议书范本
- 出国留学父母协议书范本
- 拆迁转户协议书范本
- 2025年合成材料用催化剂项目发展计划
- 退换货协议书范本
- 装修变更协议书范本
- 游戏合作合同协议书范本
- 心理健康课课件照片
- 留校学生安全协议书范本
- 东莞住宅工程质量通病防治手册
- 2025-2030年中国海洋大数据行业市场现状供需分析及投资评估规划分析研究报告
- 2025新人教版英语八上单词英译汉默写表(先鸟版)
- 药店借用资质协议书范本
- DB34T 4676-2024数字茶园建设指南
- 建筑项目主要劳动力配置计划
- 2025-2030中国孤独症及治疗市场规模与需求研究报告
- 地质调查员职业技能考试题(附答案)
- 儿童低钾血症的诊疗
- JJG(交通) 072-2024 燃烧法沥青含量测试仪
- 老年人护眼知识课件
评论
0/150
提交评论