




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x22.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9π B.18π C.24π D.36π3.如图,在平面直角坐标系中,已知点的坐标是,点是曲线上的一个动点,作轴于点,当点的橫坐标逐渐减小时,四边形的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先减小后增大4.一个直角三角形的两直角边分别为x,y,其面积为1,则y与x之间的关系用图象表示为()A. B.C. D.5.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.26.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.37.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)8.一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是()
A.3 B.4 C. D.89.反比例函数经过点(1,),则的值为()A.3 B. C. D.10.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=011.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定12.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)二、填空题(每题4分,共24分)13.已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF的面积为36,则△ABC的面积等于________.14.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______15.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.16.若分别是方程的两实根,则的值是__________.17.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.18.将数12500000用科学计数法表示为__________.三、解答题(共78分)19.(8分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).20.(8分)解方程:.21.(8分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(10分)用适当的方法解下列一元二次方程.(1);(2).23.(10分)如图,四边形ABCD内接于⊙O,∠BOD=140°,求∠BCD的度数.24.(10分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)25.(12分)如图,在中,,,夹边的长为6,求的面积.26.如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.2、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:圆锥的侧面积=×2π×3×6=18π.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3、C【分析】设点P的坐标,表示出四边形OAPB的面积,由反比例函数k是定值,当点P的横坐标逐渐减小时,四边形OAPB的面积逐渐减小.【详解】点A(0,2),则OA=2,
设点,则,
,
∵为定值,
∴随着点P的横坐标的逐渐减小时,四边形AONP的面积逐渐减小
故选:C.【点睛】考查反比例函数k的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.4、C【解析】试题分析:根据题意有:xy=2;故y与x之间的函数图象为反比例函数,且根据xy实际意义x、y应大于0,其图象在第一象限,即可判断得出答案.解:∵xy=1∴y=(x>0,y>0).故选C.考点:反比例函数的应用;反比例函数的图象.5、A【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵,
∴,
∵,
∴;
故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.6、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.7、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.8、D【分析】根据垂径定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再结合已知条件和勾股定理,求出OC即可.【详解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故选D.【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键.9、B【解析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.10、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.11、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.12、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),
故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.二、填空题(每题4分,共24分)13、16【分析】利用相似三角形面积比等于相似比的平方求解即可.【详解】解:∵ABC与DEF相似,且ΔABC与ΔDEF的相似比为2:3,∴,∵ΔDEF的面积为36,∴∴ΔABC的面积等于16,故答案为16.【点睛】本题考查了相似三角形的性质,熟记相似三角形的面积比等于相似比的平方是解决本题的关键.14、y=x2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可.抛物线的解析式为y=x2﹣1.考点:二次函数的性质.15、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将55000000用科学记数法表示为:5.5×1,故答案为:5.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】∵分别是方程的两实根,∴=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.17、(﹣1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B1旋转8次一个循环,∵2018÷8=252余数为2,∴点B2019的坐标与B3(﹣1,1)相同,∴点B2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.18、【分析】根据科学记数法的定义以及应用将数进行表示即可.【详解】故答案为:.【点睛】本题考查了科学记数法的定义以及应用,掌握科学记数法的定义以及应用是解题的关键.三、解答题(共78分)19、感知:(1)详见解析;(1)m1;拓展:m1,理由详见解析;应用:16,m1.【解析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.【详解】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案为m1,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BCD=BC•DM=×8×2=16,若BC=m,则BN=DM=BC=m,∴S△BCD=BC•DM=×m×m=m1故答案为16,m1.【点睛】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.20、(1)x1=2+,x2=2﹣;(2)x1=,x2=1.【分析】解一元二次方程常用的方法有因式分解法和公式法,方程在整式范围内不能因式分解,所以选择公式法即可求解;而方程移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(2)9(x﹣2)2﹣4(x+1)2=0,[3(x﹣2)+2(x+1)][3(x﹣2)﹣2(x+1)]=0,3(x﹣2)+2(x+1)=0或3(x﹣2)﹣2(x+1)=0,所以x1=,x2=1.【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.21、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式;(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.【详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得,故y与x的函数关系式为y=-x+150;(2)根据题意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴当x=85时,w值最大,w最大值是1.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.22、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可.【详解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.23、110°【分析】先根据圆周角定理得到∠A=∠BOD=70°,然后根据圆内接四边形的性质求∠BCD的度数.【详解】∵∠BOD=140°,∴∠A=∠BOD=70°,∴∠BCD=180°﹣∠A=110°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆内接四边形的性质.24、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.25、△ABC的面积是.【分析】作CD⊥AB于点D,根据等腰直角三角形的性质求出CD和BD的长,再利用三角函数求出AD的长,最后用三角形的面积公式求解即可.【详解】如图,作CD⊥AB于点D.∵∠B=45°,CD⊥AB∴∠BCD=45°∵BC=6∴CD=在Rt△ACD中,∠ACD=75°﹣45°=30°∴∴∴∴△ABC的面积是.【点睛】本题考查了三角函数的应用以及三角形的面积,掌握特殊三角函数的值以及三角形的面积公式是解题的关键.26、(1);(2)6;(3)或.【分析】(1)平行四边形DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 输液给药后的观察与护理
- 航空航天复合材料 课件 第3章 轻金属基复合材料
- 旅游景区停车场车位租赁及旅游合作协议
- 餐饮客户家庭聚餐签单服务合同
- 征收搬迁拆迁合同汇编宝典
- 采购人员廉洁自律与责任追究协议
- 教育机构分公司成立及人才培养合作合同
- 纸板品质管理培训
- 成都房地产项目股权质押购房合同
- 离婚协议及子女抚养权、赡养费协议
- 日语水平考试试题及答案
- 广东省东莞市2025届九年级下学期中考二模物理试卷(含答案)
- 安徽省2023~2024学年新高一数学自主招生考试试题含答案
- 冠心病患者非心脏手术麻醉管理专家共识
- 高中生安全教育
- 嘉兴市重点中学2025年初三冲刺押题(最后一卷)英语试题试卷含答案
- 婴幼儿护理的重要知识点试题及答案
- 智能化综合农贸市场建设方案与可行性分析
- 餐饮门店打样管理制度
- 人防车位使用权转让协议一次性终
- 中医养生茶饮文化分享
评论
0/150
提交评论