黑龙江省哈尔滨市49中学2022-2023学年数学九上期末联考试题含解析_第1页
黑龙江省哈尔滨市49中学2022-2023学年数学九上期末联考试题含解析_第2页
黑龙江省哈尔滨市49中学2022-2023学年数学九上期末联考试题含解析_第3页
黑龙江省哈尔滨市49中学2022-2023学年数学九上期末联考试题含解析_第4页
黑龙江省哈尔滨市49中学2022-2023学年数学九上期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,是的直径,弦于,连接、,下列结论中不一定正确的是()A. B. C. D.2.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.63.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.104.如图,⊙的半径垂直于弦,是优弧上的一点(不与点重合),若,则等于()A. B. C. D.5.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位6.下列二次根式中,与是同类二次根式的是()A. B. C. D.7.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.8.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°9.二次函数的顶点坐标为()A. B. C. D.10.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°二、填空题(每小题3分,共24分)11.如图,将绕直角顶点顺时针旋转,得到,连结,若,则的度数是____.12.长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了______.13.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.

14.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.15.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.16.方程(x﹣1)(x+2)=0的解是______.17.随着信息化时代的到来,微信支付、支付宝支付、QQ红包支付、银行卡支付等各种便捷支付已经成为我们生活中的一部分,某学校某宿舍的5名同学,有3人使用微信支付,2人使用支付宝支付,问从这5人中随机抽出两人,使用同一种支付方式的概率是_____.18.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.三、解答题(共66分)19.(10分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.(1)填空:①原点O与线段BC的“近距离”为;②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为;(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.20.(6分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.21.(6分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有______人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在______组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?22.(8分)如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.23.(8分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.24.(8分)在平面直角坐标系xOy中,抛物线与y轴交于点A.(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,.若抛物线与线段PQ恰有两个公共点,结合函数图象,求a的取值范围.25.(10分)如图,矩形ABCD中,AB=3,BC=5,CD上一点E,连接AE,将△ADE绕点A旋转90°得△AFG,连接EG、DF.(1)画出图形;(2)若EG、DF交于BC边上同一点H,且△GFH是等腰三角形,试计算CE长.26.(10分)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【详解】解:∵CD是⊙O的直径,弦AB⊥CD于E,

∴AE=BE,,故A、B正确;

∵CD是⊙O的直径,

∴∠DBC=90°,故D正确.

故选:C.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.2、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性3、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.4、A【分析】根据题意,⊙的半径垂直于弦,可应用垂径定理解题,平分弦,平分弦所对的弧、平分弦所对的圆心角,故,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得【详解】⊙的半径垂直于弦,故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.5、A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.6、A【解析】试题分析:因为=2,所以与是同类二次根式,所以A正确;因为与不是同类二次根式,所以B错误;因为,所以与不是同类二次根式,所以B错误;因为,所以与不是同类二次根式,所以B错误;故选A.考点:同类二次根式7、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.8、C【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.9、D【分析】已知二次函数y=2x2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】∵y=2x2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y=a(x−k)2+h的顶点坐标为(k,h),10、B【解析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.二、填空题(每小题3分,共24分)11、【分析】先根据旋转的性质得出,然后得出,进而求出的度数,再利用即可求出答案.【详解】∵绕直角顶点顺时针旋转,得到∵故答案为:70°.【点睛】本题主要考查旋转的性质,直角三角形两锐角互余,掌握旋转的性质是解题的关键.12、2-2【详解】由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了m.故答案为.13、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.14、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.15、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可.【详解】由题意知:抛物线的顶点坐标是(0,1).∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是.故答案为.【点睛】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键.16、1、﹣1【分析】试题分析:根据几个式子的积为0,则至少有一个式子为0,即可求得方程的根.【详解】(x﹣1)(x+1)=0x-1=0或x+1=0解得x=1或-1.考点:解一元二次方程点评:本题属于基础应用题,只需学生熟练掌握解一元二次方程的方法,即可完成.17、【详解】解:画树状图为:(用W表示使用微信支付,Z表示使用支付宝支付)共有20种等可能的结果,其中使用同一种支付方式的结果数为8,所以使用同一种支付方式的概率为=.故答案为:.【点睛】本题考查用列表法或树状图法求概率,解答关键是根据题意正确画出树状图或正确列表,从而解答问题.18、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.三、解答题(共66分)19、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.【分析】(1)①由垂线段最短,即可得到答案;②根据题意,找出正方形PQMN与△ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与△ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案.【详解】解:(1)①∵B(9,2),C(,2),∴点B、C的纵坐标相同,∴线段BC∥x轴,∴原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;②∵A(-1,-8),B(9,2),C(-1,2),∴线段BC∥x轴,线段AC∥y轴,∴AC=BC=10,△ABC是等腰直角三角形,当点N与点O重合时,点N与线段AC的最短距离为1,则正方形PQMN与△ABC的边界的“近距离”为1,此时m为最小值,∵正方形的边长为,由勾股定理,得:,∴,(舍去);当点Q到线段AB的距离为1时,此时m为最大值,如图:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值为:,∴m的取值范围为:;故答案为:;(2)抛物线C:,且,若抛物线C与△ABC的“近距离”为1,由题可知,点C与抛物线的距离为1时,如图:∵点C的坐标为(,2),∴但D的坐标为(,3),把点D代入中,有,解得:;当线段AB与抛物线的距离为1时,近距离为1,如图:即GH=1,点H在抛物线上,过点H作AB的平行线,线段AB与y轴相交于点F,作FE⊥EH,垂足为E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵点A(-1,-8),B(9,2),设直线AB为,∴,解得:,∴直线AB的解析式为:,∴直线EH的解析式为:;∴联合与,得,整理得:,∵直线EH与抛物线有一个交点,∴,解得:;综合上述,a的值为:或;(3)由题意,取AB的中点F,连接EF,如图:∵点A(-1,-8),B(9,2),∴,在中,F是AD的中点,点E是的中点,∴,∵点D的坐标为(5,-2),A(-1,-8),∴点F的坐标为(2,),∵在正方形PNMQ中,中心点的坐标为(5,),∴点Q的坐标为(6,),∴,∴;∴点E运动形成的图形与正方形PQMN的“近距离”为.【点睛】本题考查了图形的运动问题和最短路径问题,考查了二次函数的性质,正方形的性质,等腰直角三角形的性质,一次函数的平移,勾股定理,旋转的性质,根的判别式等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线,作出临界点的图形,从而进行分析.注意运用数形结合的思想和分类讨论的思想进行解题.难度很大,是中考压轴题.20、(1)211-21x;(2)12元.【解析】试题分析:(1)如果设每件商品提高x元,即可用x表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.试题解析:解:(1)211-21x;(2)根据题意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x=2.所以售价为11+2=12(元),答:售价为12元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.21、(1)400,图详见解析;(2)B;(3)660人.【分析】(1)用E组的人数除以E组所占的百分比即可得出学生总人数;根据总人数乘以B组所占百分比可得B组的人数,利用A、C各组的人数除以总人数即得A、C两组所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A、B两组的百分比之和求解即可.【详解】解:(1)40÷10%=400,∴抽取的学生共有400人;B组人数为:400×30%=120,A组占:100÷400=25%,C组占:80÷400=20%,补全统计图如下:故答案为:400;(2)∵A组有100人,B组有120人,C组有80人,D组有60人,E组有40人,∴400的最中间的两个数在B组,∴测试成绩的中位数落在B组.故答案为:B;(3)1200×(25%+30%)=660,∴该校初三测试成绩为优秀的学生有660人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到解题的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)证明见解析;(2)40°.【分析】(1)连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠ABE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在A手中的情况,再利用概率公式即可求得答案【详解】解:列树状图一共有4种结果,两次传球后,球在A手中的有2种情况,∴P(两次传球后,球在A手中的).【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论