2022年云南省昭通市名校九年级数学第一学期期末考试模拟试题含解析_第1页
2022年云南省昭通市名校九年级数学第一学期期末考试模拟试题含解析_第2页
2022年云南省昭通市名校九年级数学第一学期期末考试模拟试题含解析_第3页
2022年云南省昭通市名校九年级数学第一学期期末考试模拟试题含解析_第4页
2022年云南省昭通市名校九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个2.下列命题是真命题的个数是().①64的平方根是;②,则;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A.1个 B.2个 C.3个 D.4个3.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.164.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.5.比较cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°6.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tanA=()A. B. C. D.7.下列所给的事件中,是必然事件的是()A.一个标准大气压下,水加热到时会沸腾B.买一注福利彩票会中奖C.连续4次投掷质地均匀的硬币,4次均硬币正面朝上D.2020年的春节小长假辛集将下雪8.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m29.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.4.25m B.4.45m C.4.60m D.4.75m10.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为11.关于抛物线,下列说法错误的是()A.开口向上 B.与x轴有唯一交点C.对称轴是直线 D.当时,y随x的增大而减小12.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12 B.24 C.36 D.48二、填空题(每题4分,共24分)13.已知抛物线,当时,的取值范围是______________14.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为_____.15.2019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是17.已知函数,如果,那么___________.18.二次函数的最大值是__________.三、解答题(共78分)19.(8分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.20.(8分)化简:(1);(2).21.(8分)如图,一次函数与反比例函数的图象交于,点两点,交轴于点.(1)求、的值.(2)请根据图象直接写出不等式的解集.(3)轴上是否存在一点,使得以、、三点为顶点的三角形是为腰的等腰三角形,若存在,请直接写出符合条件的点的坐标,若不存在,请说明理由.22.(10分)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.23.(10分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?24.(10分)如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.25.(12分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?26.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.2、C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是,正确,是真命题;②,则不一定,可能;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.3、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.4、A【分析】延长BA、FE,交于点D,根据AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根据sin∠AED,AE=1.2米求出AD的长,继而可得BD的值,从而得出答案.【详解】如图,延长BA、FE,交于点D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AED,AE=1.2米,∴AD=AE•sin∠AED=1.2×sin37°≈0.72(米),则BD=AB+AD=1.18+0.72=1.9(米).故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.5、A【解析】根据同名三角函数大小的比较方法比较即可.【详解】∵,∴.故选:A.【点睛】本题考查了同名三角函数大小的比较方法,熟记锐角的正弦、正切值随角度的增大而增大;锐角的余弦、余切值随角度的增大而减小.6、B【分析】根据正切的定义计算,得到答案.【详解】在Rt△ABC中,∠C=90°,,故选:B.【点睛】本题考查正切的计算,熟知直角三角形中正切的表示是解题的关键.7、A【分析】直接利用时间发生的可能性判定即可.【详解】解:A、一个标准大气压下,水加热到100℃时会沸腾,是必然事件;B买一注福利彩票会中奖,是随机事件;C、连续4次投掷质地均匀的硬币,4次均硬币正面朝上,是随机事件;D,2020年的春节小长假辛集将下雪,是随机事件.故答案为A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,掌握三类事件的定义以及区别与联系是解答本题的关键.8、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.【点睛】此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.9、B【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】如图,设BD是BC在地面的影子,树高为x,

根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,

∴BD=0.96,

∴树在地面的实际影子长是0.96+2.6=3.56,

再竹竿的高与其影子的比值和树高与其影子的比值相同得,

∴x=4.45,

∴树高是4.45m.

故选B.【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.10、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.11、D【分析】先把抛物线化为顶点式,再根据抛物线的性质即可判断A、C、D三项,令y=0,解关于x的方程即可判断B项,进而可得答案.【详解】解:;A、∵a=1>0,∴抛物线的开口向上,说法正确,所以本选项不符合题意;B、令y=0,则,该方程有两个相等的实数根,所以抛物线与x轴有唯一交点,说法正确,所以本选项不符合题意;C、抛物线的对称轴是直线,说法正确,所以本选项不符合题意;D、当时,y随x的增大而减小,说法错误,应该是当时,y随x的增大而增大,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的性质和抛物线与x轴的交点问题,属于基本题型,熟练掌握抛物线的性质是解题关键.12、B【解析】试题解析:△ABC中,D是AB的中点,DE∥BC,是的中点,∠BEC=90°,△BCE的周长故选B.点睛:三角形的中位线平行于第三边而且等于第三边的一半.二、填空题(每题4分,共24分)13、1≤y<9【分析】根据二次函数的图象和性质求出抛物线在上的最大值和最小值即可.【详解】∴抛物线开口向上∴当时,y有最小值,最小值为1当时,y有最大值,最小值为∴当时,的取值范围是故答案为:.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.14、13【分析】利用因式分解法解方程,得到,,再利用三角形的三边关系进行判断,然后计算三角形的周长即可.【详解】解:∵,∴,∴,,∵,∴不符合题意,舍去;∴三角形的周长为:;故答案为:13.【点睛】本题考查了解一元二次方程,以及三角形的三边关系的应用,解题的关键是正确求出第三边的长度,以及掌握三角形的三边关系.15、.【分析】有15张奖券中抽取2张的所有等可能结果数为种,其中中奖总值低于300元的有种知中奖总值至少300元的结果数为种,再根据概率公式求解可得.【详解】解:从15张奖券中抽取2张的所有等可能结果数为15×14=210种,其中中奖总值低于300元的有4×3=12种,则中奖总值至少300元的结果数为210﹣12=198种,所以中奖总值至少300元的概率为=,故答案为:.【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合条件的结果数.16、.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17、1【分析】把x=2代入函数关系式即可求得.【详解】f(2)=3×22-2×2-1=1,

故答案为1.【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式.18、1【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.三、解答题(共78分)19、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2时,原式=.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.20、(1);(2)【分析】(1)由整式乘法进行化简,然后合并同类项,即可得到答案;(2)先通分,然后计算分式乘法,再合并同类项,即可得到答案.【详解】解:(1)==;(2)====;【点睛】本题考查了分式的化简求值,分式的混合运算,整式的化简求值,整式的混合运算,解题的关键是熟练掌握运算法则进行解题.21、(1),;(2)或;(3)存在,点的坐标是或或.【分析】(1)先把点A(4,3)代入求出m的值,再把A(-2,n)代入求出n即可;(2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可;(3)先求出直线AB的解析式,然后分两种情况求解即可:①当AC=AD时,②当CD=CA时,其中又分为点D在点C的左边和右边两种情况.【详解】解:(1)∵反比例函数过点点A(4,3),∴,∴,,把代入得,∴;(2)由图像可知,不等式的解集为或;(3)设直线AB的解析式为y=kx+b,把A(4,3),B(-2,-6),代入得,解得,∴,当y=0时,,解得x=2,∴C(2,0),当AC=AD时,作AH⊥x轴于点H,则CH=4-2=2,∴CD1=2CH=4,∴OD1=2+4=6,∴D1(6,0),当CD=CA时,∵AC==,∴D2(2+,0),D3(2-,0),综上可知,点的坐标是(6,0)或(2+,0)或(2-,0).【点睛】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键.22、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=,∴AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值为.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..23、(1)18;(2)3.6【分析】(1)依题意得到△APM∽△ABD,得到再由它可以求出AB;(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F则BF即为此时他在路灯AC的影子长,容易知道△EBF∽△CAF,再利用它们对应边成比例求出现在的影子.【详解】解:(1)由对称性可知AP=BQ,设AP=BQ=xm,∵MP∥BD,∴△APM∽△ABD,∴,∴=,解得x=3,∴AB=2x+12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论