




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°2.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为()A. B.0 C. D.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.下列事件中,属于必然事件的是()A.方程无实数解B.在某交通灯路口,遇到红灯C.若任取一个实数a,则D.买一注福利彩票,没有中奖5.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠06.如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明△ABC~△EDC的是()A.∠A=∠E B. C.AB∥DE D.7.如图,是的外接圆,,点是外一点,,,则线段的最大值为()A.9 B.4.5 C. D.8.如图,的外切正六边形的边长为2,则图中阴影部分的面积为()A. B. C. D.9.已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()A.1 B.0 C.-5 D.510.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;二、填空题(每小题3分,共24分)11.如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.12.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.13.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.14.如图,中,点、分别是边、的中点,、分别交对角线于点、,则______.15.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.16.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.17.在中,,,,则内切圆的半径是__________.18.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.20.(6分)端午节放假期间,小明和小华准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)求小明选择去百魔洞旅游的概率.(2)用树状图或列表的方法求小明和小华都选择去长寿村旅游的概率.21.(6分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).22.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.23.(8分)已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.24.(8分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.25.(10分)如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?26.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.2、A【分析】由题意根据坐标的变化找出变化规律并依此规律结合2017=504×4+1即可得出点A2017的坐标进而得出横坐标.【详解】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0,).∵A2A3⊥A1A2,∴点A3的坐标为(-3,0).同理可得:A4(0,-3),A5(9,0),A6(0,9),…,∴A4n+1(()4n,0),A4n+2(0,()4n+1),A4n+3(-()4n+2,0),A4n+4(0,-()4n+3)(n为自然数).∵2017=504×4+1,∴A2017(()2016,0),即(31008,0),点A2017的横坐标为.故选:A.【点睛】本题考查规律型中点的坐标以及含30度角的直角三角形,根据点的变化找出变化规律是解题的关键.3、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A、方程2x2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)2>0是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A.【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.5、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.6、D【分析】利用相似三角形的判定依次判断即可求解.【详解】A、若∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项A不符合题意;B、若,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项B不符合题意;C、若AB∥DE,可得∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项C不符合题意;D、若,且∠ACB=∠DCE,则不能证明△ABC~△EDC,故选项D符合题意;故选:D.【点睛】本题考查相似三角形的判定,熟知相似三角形的判定方法是解题的关键,判定时需注意找对对应线段.7、C【分析】连接OB、OC,如图,则△OBC是顶角为120°的等腰三角形,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,根据等腰三角形的性质和锐角三角函数可得,于是求OP的最大值转化为求PM的最大值,因为,所以当P、B、M三点共线时,PM最大,据此求解即可.【详解】解:连接OB、OC,如图,则OB=OC,∠BOC=2∠A=120°,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,过点O作ON⊥PM于点N,则∠MON=60°,MN=PM,在直角△MON中,,∴,∴当PM最大时,OP最大,又因为,所以当P、B、M三点共线时,PM最大,此时PM=3+6=9,所以OP的最大值是:.故选:C.【点睛】本题考查了圆周角定理、等腰三角形的性质、旋转的性质、解直角三角形和两点之间线段最短等知识,具有一定的难度,将△OPC绕点O顺时针旋转120°到△OMB的位置,将求OP的最大值转化为求PM的最大值是解题的关键.8、A【分析】由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA∙sin60°=2×
=
,
∴S
阴影
=S
△OAB
-S
扇形OMN
=
×2×
-
.
故选A.【点睛】考核知识点:正多边形与圆.熟记扇形面积公式是关键.9、B【分析】对照一元二次方程的一般形式,根据没有项的系数为0求解即可.【详解】∵一元二次方程的一般式为,对于一元二次方程x2-5=0中没有一次项,故b的值为0,故选:B.【点睛】此题主要考查对一元二次方程的一般形式的认识,掌握住各项系数是解题的关键.10、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得
∠BCD=∠A
tan∠BCD=tan∠A=,
故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.二、填空题(每小题3分,共24分)11、60【分析】根据题意,画出旋转过程中,与圆相切时的切线BA1,切点为D,连接OD,根据切线的性质可得∠ODB=90°,然后根据已知条件,即可得出∠OBD=30°,从而求出旋转角∠ABA1.【详解】解:如下图所示,射线BA1为射线与圆第一次相切时的切线,切点为D,连接OD∴∠ODB=90°根据题意可知:∴∠OBD=30°∴旋转角:∠ABA1=∠ABC-∠OBD=60°故答案为:60【点睛】此题考查的是切线的性质和旋转角,掌握切线的性质是解决此题的关键.12、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,13、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.14、【分析】由四边形ABCD是平行四边形可得AD∥BC,AD=BC,△DEH∽△BCH,进而得,连接AC,交BD于点M,如图,根据三角形的中位线定理可得EF∥AC,可推得,△EGH∽△CMH,于是得DG=MG,,设HG=a,依次用a的代数式表示出MH、DG、BH,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEH∽△BCH,∵E是AD中点,AD=BC,∴,连接AC,交BD于点M,如图,∵点、分别是边、的中点,∴EF∥AC,∴,△EGH∽△CMH,∴DG=MG,,设HG=a,则MH=2a,MG=3a,∴DG=3a,∴DM=6a,∵四边形ABCD是平行四边形,∴BM=DM=6a,BH=8a,∴.故答案为:.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质、三角形的中位线定理等知识,连接AC,充分利用平行四边形的性质、构建三角形的中位线和相似三角形的模型是解题的关键.15、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.16、【解析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.17、1【分析】先根据勾股定理求出斜边AB的长,然后根据直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)计算即可.【详解】解:在中,,,,根据勾股定理可得:∴内切圆的半径是故答案为:1.【点睛】此题考查的是求直角三角形内切圆的半径,掌握直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)是解决此题的关键.18、20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.三、解答题(共66分)19、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【点睛】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.20、(1);(2)【分析】(1)利用概率公式计算即可;(2)列树状图求事件的概率即可.【详解】解:(1)∵小明准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,∴小明选择去百魔洞旅游的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去长寿村旅游的概率=.【点睛】此题考查概率的计算公式,列树状图求事件的概率,正确列树状图表示所有的等可能的结果是解题的关键.21、(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.22、⊙O的半径为.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23、(1)y=﹣x2+4x+5;(2)1.【分析】(1)由A、C、(1,8)三点在抛物线上,根据待定系数法即可求出抛物线的解析式;
(2)由B、C两点的坐标求得直线BC的解析式;过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=【详解】(1)∵A(﹣1,0),C(0,5),(1,8)三点在抛物线y=ax2+bx+c上,∴,解方程组,得,故抛物线的解析式为y=﹣x2+4x+5;(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,∴M(2,9),B(5,0),设直线BC的解析式为:y=kx+b,解得,则直线BC的解析式为:y=﹣x+5.过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=当x=2时,y=﹣2+5=3,则N(2,3),则MN=9﹣3=6,则【点睛】本题考查抛物线与x轴的交点和待定系数法求二次函数解析式,掌握待定系数法是解题的关键.24、(1)证明见解析;(2)证明见解析;(3)EF=【解析】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,据此即可得;(2)由AB=AD知AB2=AD•AE,即,据此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,从而得证;(3)由知DE=1、BE=,证△FBE∽△FAB得,据此知FB=2FE,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.详解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字科技时代下的新中式美学创新
- 消防宣传教育
- 广东街道面试真题及答案
- 中职面试真题收集及答案
- 水利工程施工场地扬尘污染防治工作标准
- 珍爱生命远离毒品-小学生禁毒安全教育班会
- 外研课件转换指南
- 哲学之旅的探索与挑战
- 高中课文教案课件
- 手机软件101教育
- 《运动处方》课件-高血压人群运动处方案例
- 人工智能技术与知识产权保护
- 2025年中国数控转台行业市场规模及投资前景预测分析报告
- 建筑工程技术毕业实践报告3000字
- 中国加速康复外科临床实践指南2021
- 山东省大教育联盟学校2024-2025学年高三下学期开学检测化学试题(原卷版+解析版)
- 2025教科版六年级科学下册全册教案【含反思】
- DB43T-稻-再-油生产技术规程
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- 课件:《科学社会主义概论(第二版)》第五章
- DB36∕T 1720-2022 牧草裹包青贮技术规程
评论
0/150
提交评论