


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年青海省重点中学十校联考最后数学测试卷注意事项1.考生要认真填写考场号和座位序号。2.测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.2.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体 B.球 C.圆锥 D.圆柱体3.将某不等式组的解集表示在数轴上,下列表示正确的是()A. B.C. D.4.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(
)A. B. C. D.5.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A. B. C. D.6.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.47.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)8.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:99.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为(
)A.2cm2
B.3cm2
C.4cm2
D.5cm210.下列命题正确的是()A.内错角相等B.-1是无理数C.1的立方根是±1D.两角及一边对应相等的两个三角形全等二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则≥1﹣1.12.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.13.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.14.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.15.已知n>1,M=,N=,P=,则M、N、P的大小关系为.16.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.三、解答题(共8题,共72分)17.(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.18.(8分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201519.(8分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:≈1.414,≈1.732)20.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?21.(8分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.(10分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.23.(12分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.24.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】
列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.【题目详解】画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选C.2、D【答案解析】
本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【题目详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【答案点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.3、B【答案解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、D【答案解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【题目详解】cosα=.故选D.【答案点睛】熟悉掌握锐角三角函数的定义是关键.5、B【答案解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【题目详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B.【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.6、A【答案解析】测试卷分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质7、A【答案解析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【题目详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【答案点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8、A【答案解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【题目详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【答案点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.9、C【答案解析】
延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【题目详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故选C.【答案点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=12S△10、D【答案解析】解:A.两直线平行,内错角相等,故A错误;B.-1是有理数,故B错误;C.1的立方根是1,故C错误;D.两角及一边对应相等的两个三角形全等,正确.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、①②③④⑤⑥⑦.【答案解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.【题目详解】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.则∠DAH=∠BAM,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正确;∵BM+DN≥1,(当且仅当BM=DN时,取等号)∴BM=DN时,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一点G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,∴≤≤1,⑧错误;∵MN=NH=BM+DN∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;∵△MAN≌△HAN,∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN•MP=AM•AN•sin45°,S△AEF=AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【答案点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.12、【答案解析】测试卷分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.13、5【答案解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【题目详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R-2)2,
解得R=5,
∴该光盘的半径是5cm.
故答案为5【答案点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.14、4π【答案解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.15、M>P>N【答案解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.16、8﹣π【答案解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋转的性质结合已知条件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.三、解答题(共8题,共72分)17、(1);(2)【答案解析】
(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【题目详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:
共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
所以至少有一个孩子是女孩的概率=.【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【答案解析】测试卷分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.(3)列出y与x的关系式,求y的最大值时,x的值.测试卷解析:(1)y=20x+15(600-x)=5x+9000,∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得50x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3),∵,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.19、33层.【答案解析】
根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数.【题目详解】解:在Rt△ABD中,BD=AB•sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每层台阶的高为22cm,∴改造后的台阶有(3+3)×100÷22≈33(个)答:改造后的台阶有33个.【答案点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.20、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【答案解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【答案解析】
(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=,将得到的三个关系联立即可得到,再由题中已知−1<h<1,利用h的范围求出m的范围.【题目详解】(1)将点(2,1),(3,1),代入一次函数y=mx+n中,,解得,∴一次函数的解析式是y=x﹣2,再将点(2,1),(3,1),代入二次函数y=mx2+nx+1,,解得,∴二次函数的解析式是.(2)∵一次函数y=mx+n经过点(2,1),∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省重点高中沈阳市郊联体2024-2025学年高二下学期4月月考政治试题(原卷版+解析版)
- 二零二五资产抵押担保合同
- 顺德区前期物业服务合同
- 激波管实验室的主要设备及特点,主要风险及安全注意事项
- 合伙分配协议
- 离婚后同居协议合同书范例
- 三方商铺租赁合同书范例
- 二零二五加盟店合作合同书范例
- 来宾酒厂独家经销商合作协议书
- DB37∕T 4169-2020 大樱桃避雨防霜栽培技术规程
- 2025年教师资格师德师风建设试题及答案
- 期中测试卷(1-5单元)(试题)(含答案)-2024-2025学年二年级下册数学青岛版
- 2025届北京市顺义区高三下学期一模英语试题(原卷版+解析版)
- 人工智能技术与知识产权保护
- 2025-2030便利店行业市场发展现状及发展前景与投资研究报告
- 2025届高三湖北省十一校第二次联考英语试卷(含答案详解)
- 信息技术与小学教育教学融合
- 产品设计研发费用统计表
- 提高教学管理质量校长讲话:“2574”工作实施思路!即两大抓手五项重点任务七个落实环节四个质量目标
- 2025届广东省深圳市高三年级第一次调研考试历史试题
- 清理报废渔船合同范本
评论
0/150
提交评论