版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA C.AAS D.SAS2.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④3.在平面直角坐标系中,点(1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()A.①②③④ B.②③④⑤ C.①③④⑤ D.①②③⑤5.下列约分正确的有()(1);(2);(3);(4)A.0个 B.1个 C.2个 D.3个6.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1 D.ax+ay=a(x﹣y)7.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm8.若关于的分式方程无解,则的值是().A.2 B.3 C.4 D.59.如图:若函数与的图象交于点,则关于的不等式的解集是()A. B. C. D.10.如图,中,点的坐标是,点的坐标是,点的坐标是,要使与全等,那么符合条件的格点有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,中,,以它的各边为边向外作三个正方形,面积分别为、、,已知,,则______.12.0.000608用科学记数法表示为.13.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差_______.选手1号2号3号4号5号平均成绩得分9095■89889114.己知一次函数的图象与轴、轴分别交于、两点,将这条直线进行平移后交轴、轴分别交于、,要使点、、、构成的四边形面积为4,则直线的解析式为__________.15.在的运算结果中系数为,那么的值为_____________.16.a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状_____.17.因式分解:ax3y﹣axy3=_____.18.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_______.三、解答题(共66分)19.(10分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.20.(6分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.每名熟练工和新工人每月分别可以安装多少辆电动汽车?如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?21.(6分)如图,已知.(1)画关于x轴对称的;(2)在轴上画出点,使最短.22.(8分)如图,中,,,是上一点(不与重合),于,若是的中点,请判断的形状,并说明理由.23.(8分)已知的积不含项与项,求的值是多少?24.(8分)某工厂准备在春节前生产甲、乙两种型号的新年礼盒共80万套,两种礼盒的成本和售价如下表所示;甲乙成本(元/套)2528售价(元/套)3038(1)该工厂计划筹资金2150万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为690万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当为多少时成本有最小值,并求出成本的最小值为多少万元?25.(10分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?26.(10分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?请直接写出结论,不需要证明.(2)将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下图2,上述关系是否成立?如果成立请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【详解】解:连接NC,MC,在△ONC和△OMC中,,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题型较好,难度适中.2、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【详解】解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵BD平分∠ABC,∠ABC=∠ACB,
∵∠ABC+∠ACB+∠BAC=180°,
当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;
∵∠ADB=∠ABD,
∴AD=AB,
∴AD=AC,故④正确;
故选:B.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.3、D【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】点(1,-2)所在的象限是第四象限,故选D.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.4、D【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE②正确,∵△CQB≌△CPA,∴AP=BQ③正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确.故选:D.5、B【分析】原式各项约分得到结果,即可做出判断.【详解】(1),故此项正确;(2),故此项错误;(3),故此项错误;(4)不能约分,故此项错误;综上所述答案选B【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.6、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义.7、C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.8、C【分析】分式方程无解有两种情况一是增根,二是分式方程的根是分式的形式,分母为0无意义.【详解】方程两边同乘以得,∴,∴,若,则原方程分母,此时方程无解,∴,∴时方程无解.故选:C.【点睛】本题的关键是分式方程无解有两种情况,要分别进行讨论.9、B【分析】首先得出的值,再观察函数图象得到,当时,一次函数的图象都在一次函数的图象的上方,由此得到不等式的解集.【详解】∵函数与的图象相交于点,
∴,
解得:,
观察函数图象得到:关于的不等式的解集是:.
故选:B.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10、A【分析】根据全等三角形的判定:SSS、SAS、ASA、AAS、HL,这五种方法来判定即可得出符合条件的点D的个数.【详解】解:如图所示:所以符合条件的D点有1个,故选:A.【点睛】本题考查的是全等三角形判定的5种方法,掌握全等三角形的判定以及运用是解题这个题的关键.二、填空题(每小题3分,共24分)11、1【分析】由中,,得,结合正方形的面积公式,得+=,进而即可得到答案.【详解】∵中,,∴,∵=,=,=,∴+=,∵,,∴6+8=1,故答案是:1.【点睛】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.12、6.08×10﹣1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000608用科学记数法表示为6.08×10﹣1,故答案为6.08×10﹣1.考点:科学记数法—表示较小的数.13、6.8;【分析】首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.【详解】解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为:91×5-90-95-89-88=93(分),∴方差为:[(90-91)2+(95-91)2+(93-91)2+(89-91)2+(88-91)2]=6.8,故答案为:6.8.【点睛】本题考查了求方差,以及知道平均数求某个数据,解题的关键是掌握求方差的公式,以及正确求出3号选手的成绩.14、或.【分析】先确定、点的坐标,利用两直线平移的问题设直线的解析式为,则可表示出,,,讨论:当点在轴的正半轴时,利用三角形面积公式得到,当点在轴的负半轴时,利用三角形面积公式得到,然后分别解关于的方程后确定满足条件的的直线解析式.【详解】解:一次函数的图象与轴、轴分别交于、两点,,,,设直线的解析式为,,,,如图1,当点在轴的正半轴时,则,依题意得:,解得(舍去)或,此时直线的解析式为;如图2,当点在轴的负半轴时,则,依题意得:,解得(舍去)或,此时直线的解析式为,综上所述,直线的解析式为或.故答案为:或.【点睛】本题考查了一次函数图象与几何变换:求直线平移后的解析式时要注意平移时的值不变.也考查了三角形面积公式.15、【分析】先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是−2,列出关于a的等式求解即可.【详解】解:(x+1)(2x2+ax+1)=2x3+ax2+x+2x2+ax+1=2x3+(a+2)x2+(1+a)x+1;∵运算结果中x2的系数是−2,∴a+2=−2,解得a=−1,故答案为:-1.【点睛】本题考查了多项式的乘法,注意运用运算结果中x2的系数是−2,列方程求解.16、等边三角形.【解析】由两点关于x轴对称可得a-c=0,a=b,进而根据三角形三边关系判断△ABC的形状即可.【详解】解:∵点(a-c,a)与点(0,-b)关于x轴对称,∴a-c=0,a=b,∴a=b=c,∴△ABC是等边三角形,故答案为等边三角形.【点睛】此题主要考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数.17、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.18、120°或20°【详解】根据等腰三角形的特点,可分两种情况:顶角与底角的度数比是1:4或底角与顶角的度数比是1:4,根据三角形的内角和定理就可求解:当顶角与底角的度数比是1:4时,则等腰三角形的顶角是180°×=20°;当底角与顶角的度数比是1:4时,则等腰三角形的顶角是180°×=120°.即该等腰三角形的顶角为20°或120°.考点:等腰三角形三、解答题(共66分)19、(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.20、(1)每名熟练工和新工人每月分别可以安装、辆电动汽车.工厂有种新工人的招聘方案.①新工人人,熟练工人;②新工人人,熟练工人;③新工人人,熟练工人;④新工人人,熟练工人.当,时(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【解析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解;(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,结合(2)进行分析即可得.【详解】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据题意,得,解得,答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车;设工厂有名熟练工,根据题意,得,,,又,都是正整数,,所以,,,.即工厂有种新工人的招聘方案.①,,即新工人人,熟练工人;②,,即新工人人,熟练工人;③,,即新工人人,熟练工人;④,,即新工人人,熟练工人;结合知:要使新工人的数量多于熟练工,则,;或,;或,,根据题意,得,要使工厂每月支出的工资总额(元)尽可能地少,则应最大,显然当,时,(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【点睛】本题考查了二元一次方程组的应用、一次方程组的应用,理解题意,正确找准等量关系以及各量间的数量关系是解题的关键.21、(1)见解析;(2)见解析【分析】(1)作出A、C两点关于x轴的对称点,再顺次连接即可;(2)作点A关于y轴的对称点,连接,交y轴于点D,点D即为所求.【详解】(1)如图所示:(2)①作点A关于y轴的对称点,②连接,交y轴于点D,点D即为所求.【点睛】此题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点的位置是解题关键.22、的形状为等边三角形,理由见解析.【分析】由直角三角形的性质得:,,,,结合,即可得到结论.【详解】∵在中,,是斜边的中点,∴,∴,同理,在中,,,∴,即是等腰三角形,∴,∴是等边三角形.【点睛】本题主要考查等边三角形的判定定理,直角三角形的性质定理,掌握“直角三角形斜边上的中线等于斜边的一半,是解题的关键.”23、x3+1【解析】试题分析:先根据多项式乘多项式的法则计算,再让x2项和x项的系数为0,求得a,c的值,代入求解.解:∵(x+a)(x2﹣x+c),=x3﹣x2+cx+ax2﹣ax+ac,=x3+(a﹣1)x2+(c﹣a)x+ac,又∵积中不含x2项和x项,∴a﹣1=0,c﹣a=0,解得a=1,c=1.又∵a=c=1.∴(x+a)(x2﹣x+c)=x3+1.考点:多项式乘多项式.24、(1)甲礼盒生产30万套,乙礼盒生产50万套;(2)方案如下:①;②;③;(3)时,最小值为万元.【分析】(1)设甲礼盒生产万套,乙礼盒生产万套,从而列出相应的方程,即可解答本题;(2)根据表格可以求得A的利润与B的利润,从而可以求得总利润,写出相应的关系式,再利用正整数的特性得出可行的生产方案;(3)根据表格的数据,列出相应的函数关系式,利用一次函数的增减性即可成本的最小值.【详解】(1)设甲礼盒生产万套,乙礼盒生产万套,依题意得:,解得:,答:甲礼盒生产30万套,乙礼盒生产50万套;(2)增加生产后,甲万套,乙万套,依题意得:,化简得:,∴方案如下:;;;答:有三种方案,,,;(3)依题意得:,化简得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 师傅劳动合同范例
- 套房出现简易合同范例
- 快递美金合同范例
- 通史版2024高考历史统考一轮复习模块1第8单元第20讲新民主主义革命的崛起和国共十年对峙课时跟踪一练而就含解析
- 2024-2025学年新教材高中历史6.15文化遗产:全人类共同的财富学案新人教版选择性必修3
- 2024-2025学年高中历史第二单元第二次世界大战第2课从局部的反法西斯斗争到走向世界大战习题含解析新人教版选修3
- 培训合同范例豆丁
- 小区道闸广告合同范例
- 商务协议酒店合同范例
- 工作装合同范例
- 新生儿NEC个案护理
- 美国总统大选与民主课件
- 高通量计算材料结构搜索
- 伤口疼痛管理减轻患者痛苦
- 汽车事故应急预案
- 物流管理信息系统订单管理信息系统
- 医院感染科护士的消毒与无菌技术培训
- 《构建和谐班级》课件
- 2023中国可持续消费报告
- (广州卷)2024年中考语文第一次模拟考试卷附答案
- 科技创新政策解读
评论
0/150
提交评论