2022年山东省潍坊市滨海区数学八年级上册期末综合测试模拟试题含解析_第1页
2022年山东省潍坊市滨海区数学八年级上册期末综合测试模拟试题含解析_第2页
2022年山东省潍坊市滨海区数学八年级上册期末综合测试模拟试题含解析_第3页
2022年山东省潍坊市滨海区数学八年级上册期末综合测试模拟试题含解析_第4页
2022年山东省潍坊市滨海区数学八年级上册期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下轴对称图形中,对称轴条数最少的是()A. B.C. D.2.下列运算中正确的是()A.x2÷x8=x﹣4 B.a•a2=a2 C.(a3)2=a6 D.(3a)3=9a33.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1 B.5 C. D.5或4.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35° B.40° C.45° D.50°5.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)6.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a57.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A.方 B.雷 C.罗 D.安8.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B.C. D.9.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)10.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有()A.①②③④ B.②③④ C.①②③ D.①②④二、填空题(每小题3分,共24分)11.2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为_____.12.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)13.若最简二次根式与能合并,则__________.14.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.15.“厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based处理器鲲鹏1.据了解,该处理器釆用7纳米工艺制造,已知1纳米=0.000000001,则7纳米用科学计数法表示为___________.16.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.17.x+=3,则x2+=_____.18.已知一组数据:2,4,5,6,8,则它的方差为__________.三、解答题(共66分)19.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?20.(6分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?21.(6分)如图,已知,为线段上一点,为线段上一点,,设,.①如果,那么_______,_________;②求之间的关系式.22.(8分)如图,,,于点.求证:.23.(8分)如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.24.(8分)已知为等边三角形,点为直线上一动点(点不与点、点重合).连接,以为边向逆时针方向作等边,连接,(1)如图1,当点在边上时:①求证:;②判断之间的数量关系是;(2)如图2,当点在边的延长线上时,其他条件不变,判断之间存在的数量关系,并写出证明过程;(3)如图3,当点在边的反向延长线上时,其他条件不变,请直接写出之间存在的数量关系为.25.(10分)已知,,,试解答下列问题:(1)如图①,则__________,则与的位置关系为__________(2)如图②,若点E、F在线段上,且始终保持,.则的度数等于__________;(3)在第(2)题的条件下,若平行移动到图③所示①在移动的过程中,与的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当时,求的度数.26.(10分)因式分解:(1)(2)

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据轴对称图形的概念对各选项分析判断即可解答.【详解】选项A有四条对称轴;选项B有六条对称轴;选项C有四条对称轴;选项D有二条对称轴.综上所述,对称轴最少的是D选项.故选D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【详解】A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选C.【点睛】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3、D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.4、C【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,AE⊥BD∴BD是AE的垂直平分线,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、C【解析】先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6、A【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.7、C【解析】根据轴对称图形的概念观察图形判断即可.【详解】由图可知,是轴对称图形的只有“罗”.故答案选:C.【点睛】本题考查了轴对称图形的概念,解题的关键是熟练的掌握轴对称图形的概念.8、A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.9、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.10、A【分析】根据角平分线上的点到角的两边距离相等可得,再利用“”证明和全等,根据全等三角形对应边相等可得,利用“”证明和全等,根据全等三角形对应边相等可得,然后求出;根据全等三角形对应角相等可得,利用“8字型”证明;,再根据全等三角形对应角相等可得,然后求出.【详解】解:平分,,,,在和中,,,故①正确;,在和中,,,,,故②正确;,,设交于O,,,故③正确;,,,,,,故④正确;综上所述,正确的结论有①②③④共4个.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.二、填空题(每小题3分,共24分)11、5.19×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10﹣1,故答案为:5.19×10﹣1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.13、4【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】解:根据题意得,,移项合并:,故答案为:4.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.14、(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;

∴对称的点的坐标是(2,-3).

故答案为(2,-3).15、【分析】根据科学计数法直接写出即可.【详解】0.000000001×7=,故答案为.【点睛】本题是对科学计数法的考查,熟练掌握科学计数法的知识是解决本题的关键.16、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.17、1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.18、1【分析】先求出这组数据的平均数,再由方差的计算公式计算方差.【详解】解:一组数据2,1,5,6,8,

这组数据的平均数为:,∴这组数据的方差为:.故答案为:1.【点睛】本题考查求一组数的方程.掌握平均数和方差的计算公式是解决此题的关键.三、解答题(共66分)19、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.20、(1)80人;(2)11.5元;(3)10元.【解析】试题分析:(1)参加这次夏令营活动的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出平均数.(3)因为初中生最多,所以众数为初中生捐款数.试题解析:解:(1)参加这次夏令营活动的初中生共有200×(1-10%-20%-30%)=80人;

(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,

所以平均每人捐款==11.5(元);

(3)因为初中生最多,所以众数为10(元).21、①20,10;②α=2β【分析】①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;

②利用等腰三角形的性质和三角形的内角和即可得出结论;【详解】解:①∵AB=AC,∠ABC=60°,

∴∠BAC=60°,

∵AD=AE,∠ADE=70°,

∴∠DAE=180°-2∠ADE=40°,

∴α=∠BAD=60°-40°=20°,

∴∠ADC=∠BAD+∠ABD=60°+20°=80°,

∴β=∠CDE=∠ADC-∠ADE=10°,

故答案为:20,10;

②设∠ABC=x,∠AED=y,

∴∠ACB=x,∠AED=y,

在△DEC中,y=β+x,

在△ABD中,α+x=y+β=β+x+β,

∴α=2β.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.22、证明见解析.【分析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,,所以得∠C=∠2,从而证得AB∥CD.【详解】证明:∵BE⊥FD,

∴∠EGD=90°,

∴∠1+∠D=90°,

∵∠2+∠D=90°,

∴∠1=∠2,

已知,

∴∠C=∠2,

∴AB∥CD.【点睛】本题考查的是平行线的判定,解题关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23、(1)AB的长为10;(2)△ADE的面积为36;(3)M点的坐标(4,-4)或(12,12)【分析】(1)利用直线AB的函数解析式求出A、B坐标,再利用勾股定理求出AB即可;(2)由折叠知∠B=∠C,∠BDA=∠CDA,由∠BAO=∠CAE证得∠AEC=∠AOB=90º,利用角平分线的性质得到OA=AE,进而证得Rt△AOD≌Rt△AED,利用全等三角形的性质和三角形的面积公式求解即可;(3)由待定系数法求出直线AB的解析式,设点M的坐标,根据折叠性质知MB=MC,根据题意,有,代入点M坐标解方程即可求解.【详解】(1)当x=0时,y=8,∴B(0,8),当y=0时,由得,x=6,∴A(6,0),在Rt△AOB中,OA=6,OB=8,由勾股定理得:AB==10;(2)由折叠性质得:∠B=∠C,∠BDA=∠CDA,AC=AB=10,BD=DC,∴OC=16,设OD=x,则DC=BD=x+8,在Rt△COD中,由勾股定理得:,解得:OD=12,∵∠BAO=∠CAE,且∠B+∠BAO+∠AOB=∠C+∠CAE+∠AEC=180º,∴∠AEC=∠AOB=90º,∴∠AED=∠AOD=90º,又∵∠BDA=∠CDA,∴OA=AE=3,在Rt△AOD和Rt△AED中,,∴Rt△AOD≌Rt△AED,∴;(3)设直线AD的解析式为y=kx+b,由(2)中OD=12得:点D坐标为(0,-12),将点D(0,-12)、A(6,0)代入,得:,解得:,∴直线AD的解析式为y=2x-12,∵点M为直线AD上一点,故设点M坐标为(m,2m-12),由折叠性质得:MB=MC,且△MBC为等腰直角三角形,∴∠BMC=90º在Rt△BOC和Rt△BMC中,由勾股定理得:,,即,∴,即,解得:m=4或m=12,则满足条件的点M坐标为(4,-4)或(12,12).【点睛】本题主要考查一次函数的图象与性质、求一次函数解析式、勾股定理、折叠的性质、角平分线的性质定理、全等三角形的判定与性质、一元二次方程等知识,解答的关键是认真审题,寻找相关信息的关联点,利用数形结合法、待定系数法等思想方法确定解题思路,进而推理、探究、发现和计算.24、(1)①见解析;②AC=CE+CD;(2)CE=AC+CD,证明见解析;(3)CD=CE+AC.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=AC,AD=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出AC=BC=CD+CE;

(2)同(1)先证明△ABD≌△ACE,从而可得出BD=BC+CD=AC+CD=CE;(3)同(1)先证明△ABD≌△ACE,从而可得出CE+AC=CD.【详解】解:(1)①∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC-∠DAC=∠DAE-∠DAC,

∴∠BAD=∠EAC.

在△ABD和△ACE中,∴△ABD≌△ACE(SAS).

②∵△ABD≌△ACE,

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD,∴AC=CE+CD,故答案为:AC=CE+CD;

(2)AC+CD=CE.证明如下:

∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC+∠DAC=∠DAE+∠DAC,

∴∠BAD=∠EAC.

在△ABD和△ACE中,∴△ABD≌△ACE(SAS).

∴BD=CE.

∵BD=BC+CD,

∴CE=AC+CD;(3)DC=CE+BC.证明如下:

∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC-∠BAE=∠DAE-∠BAE,

∴∠BAD=∠EAC.

在△ABD和△ACE中,∴△ABD≌△ACE(SAS).

∴BD=CE.

∵CD=BD+BC,

∴CD=CE+AC.故答案为:CD=CE+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论