2022年湖北省襄阳市宜城区数学八年级第一学期期末学业质量监测模拟试题含解析_第1页
2022年湖北省襄阳市宜城区数学八年级第一学期期末学业质量监测模拟试题含解析_第2页
2022年湖北省襄阳市宜城区数学八年级第一学期期末学业质量监测模拟试题含解析_第3页
2022年湖北省襄阳市宜城区数学八年级第一学期期末学业质量监测模拟试题含解析_第4页
2022年湖北省襄阳市宜城区数学八年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,于点,,,则的度数为()A. B. C. D.2.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0) B.(-2,0) C.(6,0) D.(-6,0)3.已知点A(4,5),则点A关于x轴对称的点A′的坐标是()A.(﹣5,﹣4) B.(﹣4,5) C.(﹣4,﹣5) D.(4,﹣5)4.如图,,,则等于()A. B. C. D.5.化简的结果为()A. B. C. D.6.要使有意义,则的取值范围是()A. B. C. D.7.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定8.关于x的方程的解为正数,则k的取值范围是()A. B. C.且 D.且9.一次函数的图象不经过的象限是()A.一 B.二 C.三 D.四10.下列各点在正比例函数的图象上的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.12.在平面直角坐标系中,矩形如图放置,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点第次碰到矩形的边时,点的坐标为;当点第次碰到矩形的边时,点的坐标为__________.13.用科学计数法表示为______14.华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管.其中7nm可用科学记数法表示为_____________米.15.如图,在平面直角坐标系中,点、的坐标分别为、,若将线段绕点顺时针旋转得到线段,则点的坐标为________.16.计算:__________.17.如图,在中,,的垂直平分线交于点,交于,连接,若且的周长为30,则的长是__________.18.已知点M关于y轴的对称点为N(a,b),则a+b的值是______.三、解答题(共66分)19.(10分)在正方形网格中建立如图的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向下平移5单位长度,画出平移后的并写出点A对应点的坐标;(2)画出关于y轴对称的并写出的坐标;(3)=______.(直接写答案)(4)在x轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)20.(6分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:西瓜质量(单位:千克)5.45.35.04.84.44.0西瓜数量(单位:个)123211(1)这10个西瓜质量的众数和中位数分别是和;(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?21.(6分)观察下列算式:由上可以类似地推出:用含字母的等式表示(1)中的一-般规律(为非零自然数);用以上方法解方程:22.(8分)(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知a=,求a2+b2的值.23.(8分)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.24.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。25.(10分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽气车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少方元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?26.(10分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据角平分线的判定可知,BD平分∠ABC,根据已知条件可求出∠A的度数.【详解】解:∵,,且∴是的角平分线,∴,∴,∴在中,,故答案选D.【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键.2、B【分析】先求出平移后的解析式,继而令y=0,可得关于x的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知向上平移6个单位后得函数解析式应为,此时与轴相交,则,∴,即,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.3、D【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点A(4,5),则点A关于x轴对称的点A′的坐标是(4,﹣5),故选:D.【点睛】本题考查关于坐标轴对称的点的坐标特征,解题的关键是掌握关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.4、D【分析】由题意可证△ABC≌△CDE,即可得CD=AB=6cm,DE=BC=3cm,进而可求出BD的长.【详解】解:∵AB⊥BD,∠ACE=90°,

∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°,

∴∠DCE=∠BAC且∠B=∠D=90°,且AC=CE,

∴△ABC≌△CDE(AAS),

∴CD=AB=6cm,DE=BC=3cm,

∴BD=BC+CD=9cm.

故选:D.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.5、B【解析】根据分式加减法的运算法则按顺序进行化简即可.【详解】原式====故选B【点睛】本题考查分式的运算、平方差公式、完全平方公式,熟练掌握分式运算法则、公式法因式分解是解题关键.6、D【分析】根据二次根式有意义的条件可得,求解即可.【详解】由题意得:,

解得:,

故选:D.【点睛】本题主要考查了二次根式有意义的条件,关键是掌握被开方数必须是非负数.7、B【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【详解】过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选B.8、C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:,解得:,根据题意得:,且,解得:,且.故选C.【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.9、B【分析】根据一次函数中k与b的符合判断即可得到答案.【详解】∵k=2>0,b=-3<0,∴一次函数的图象经过第一、三、四象限,故选:B.【点睛】此题考查一次函数的性质,熟记性质定理即可正确解题.10、A【分析】分别把各点代入正比例函数的解析式进行检验即可.【详解】A、∵当x=−1时,y=2,∴此点在函数图象上,故本选项正确;B、∵当x=1时,y=−2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=0.5时,y=−1≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=−2时,y=4≠1,∴此点不在函数图象上,故本选项错误.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每小题3分,共24分)11、1.【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.12、(8,3)【分析】根据反弹的方式作出图形,可知每6次碰到矩形的边为一个循环组依次循环,用2019除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,当点P第2次碰到矩形的边时,点P的坐标为:(7,4);

当点P第6次碰到矩形的边时,点P的坐标为(0,3),

经过6次碰到矩形的边后动点回到出发点,

∵2019÷6=336…3,

∴当点P第2019次碰到矩形的边时为第337个循环组的第3次碰到矩形的边,

∴点P的坐标为(8,3).

故答案为:(8,3).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次碰到矩形的边为一个循环组依次循环是解题的关键.13、2.57×10−1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=2.57×10−1.故答案为:2.57×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、7×10-9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7nm=0.000000007m=7×10-9m故填:7×10-9.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、【分析】作AC⊥x轴于C,利用点A、B的坐标得到AC=2,BC=4,根据旋转的定义,可把Rt△BAC绕点B顺时针旋转90°得到△BA′C′,如图,利用旋转的性质得BC′=BC=4,A′C′=AC=2,于是可得到点A′的坐标.【详解】作AC⊥x轴于C,

∵点A、B的坐标分别为(3,2)、(-1,0),∴AC=2,BC=3+1=4,把Rt△BAC绕点B顺时针旋转90°得到△BA′C′,如图,∴BC′=BC=4,A′C′=AC=2,∴点A′的坐标为(1,-4).故答案为(1,-4).【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把线段的旋转问题转化为直角三角形的旋转.16、【解析】直接计算即可得解.【详解】解:原式===故答案为.【点睛】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.17、1【分析】根据CE=5,AC=12,且△ACE的周长为30,可得AE的长,再根据线段垂直平分线的性质,可得答案.【详解】解:∵CE=5,AC=12,且△ACE的周长为30,

∴AE=1.

∵AB的垂直平分线交AB于D,交BC于E,

∴BE=AE=1,

故答案是:1.【点睛】本题考查了线段垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等.18、-1【分析】直接利用关于y轴对称点的性质:纵坐标不变,横坐标互为相反数,求出a,b的值,即可求解.【详解】解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得

a=-3,b=-2,

∴a+b=-1.

故答案为:-1.【点睛】本题考查关于y轴对称点的性质,正确得出a,b的值是解题关键.三、解答题(共66分)19、(1)见解析,(4,−1);(2)见解析,(−4,−1);(3)2;(4)见解析【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点、、的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标.(2)根据网格结构找出点A1、B1、C1关于y轴对称的点、、的位置,顺次连接即可,再根据平面直角坐标系写出点的坐标;(3)根据三角形的面积公式计算即可;(4)作点B关于x轴的对称点,连接交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,即为所求,点的坐标(4,−1);(2)如图所示,即为所求,(−4,−1);(3)=×2×2=2,故答案为:2;(4)如图所示,点P即为所求.【点睛】本题考查了网格中平移图形,对称图形的作图方法,“将军饮马”模型求两点之间线段最短问题,网格中三角形面积的求法,熟练掌握网格中的作图方法是解题的关键,注意熟记图形模型和性质.20、(1)5.1千克,5.1千克;(2)2941千克.【解析】(1)根据众数和中位数的定义求解;(2)先求出样本的平均数,再估计总体.【详解】(1)5.1出现的次数最多,是3次,因而众数是5;共有11个数,中间位置的是第5个,与第6个,中位数是这两个数的平均数是5.1.(2)11个西瓜的平均数是(5.4+5.3×2+5.1×3+4.8×2+4.4+4.1)=4.9千克,则这亩地共可收获西瓜约为611×4.9=2941千克.答:这亩地共可收获西瓜约为2941千克.【点睛】本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本平均数估计总体平均数.21、(1);(2);(3)【分析】(1)根据题目给出数的规律即可求出答案(2)观察发现,各组等式的分子分母均为1,分母中的第一个数与等式的个数n一致,第二个数为n+1,据此可得规律;

(3)按照所发现的规律,将各项展开后,合并后得,得出方程,然后解分式方程即可【详解】解:由此推断得:它的一般规律是:将方程化为:,即解得:,经检验是原分式方程的解.【点睛】本题考查了裂项法的规律发现及其应用,善于根据所给的几组等式,观察出其规律,是解题的关键.22、(1)±1;(1)1.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(1)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a1+b1=6,ab=1,得a1+b1-1ab=4,(a-b)1=4,a-b=±1.(1),,【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.23、见解析【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【详解】连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点睛】此题主要考查等腰三角形的性质,熟练掌握,即可解题.24、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.25、(1)A种型号的汽车每辆进价为25万元,B种型号的汽车每辆进价为10万元;(2)三种购车方案,方案详见解析;(3)购买A种型号的汽车2辆,B种型号的汽车15辆,可获得最大利润,最大利润为91000元【分析】(1)设A种型号的汽车每辆进价为x万元,B种型号的汽车每辆进价为y万元,根据题意列出方程组求解即可.(2)设购

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论