版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新高考专题04立体几何【2022年新高考1卷】1.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()(
)A. B. C. D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.【2022年新高考1卷】2.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(
)A. B. C. D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.【2022年新高考2卷】3.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为(
)A. B. C. D.【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.【2021年新高考1卷】4.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为(
)A. B. C. D.【答案】B【解析】【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.【2021年新高考2卷】5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为(
)A. B. C. D.【答案】D【解析】【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所以该棱台的体积.故选:D.【2020年新高考1卷(山东卷)】6.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为(
)A.20° B.40°C.50° D.90°【答案】B【解析】【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【详解】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.【2022年新高考1卷】7.已知正方体,则(
)A.直线与所成的角为 B.直线与所成的角为C.直线与平面所成的角为 D.直线与平面ABCD所成的角为【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD【2022年新高考2卷】8.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则(
)A. B.C. D.【答案】CD【解析】【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.【2021年新高考1卷】9.在正三棱柱中,,点满足,其中,,则(
)A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【解析】【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.【详解】易知,点在矩形内部(含边界).对于A,当时,,即此时线段,周长不是定值,故A错误;对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.对于C,当时,,取,中点分别为,,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.故选:BD.【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.【2021年新高考2卷】10.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是(
)A. B.C. D.【答案】BC【解析】【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.【详解】设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,在直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.【2020年新高考1卷(山东卷)】11.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.【答案】.【解析】【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【详解】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.【2020年新高考2卷(海南卷)】12.已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________【答案】【解析】【分析】利用计算即可.【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.【2022年新高考1卷】13.如图,直三棱柱的体积为4,的面积为.(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.【答案】(1)(2)【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.(1)在直三棱柱中,设点A到平面的距离为h,则,解得,所以点A到平面的距离为;(2)取的中点E,连接AE,如图,因为,所以,又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得,所以,,所以,则,所以的中点,则,,设平面的一个法向量,则,可取,设平面的一个法向量,则,可取,则,所以二面角的正弦值为.【2022年新高考2卷】14.如图,是三棱锥的高,,,E是的中点.(1)证明:平面;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;(2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得.(1)证明:连接并延长交于点,连接、,因为是三棱锥的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,,所以所以,即,所以为的中点,又为的中点,所以,又平面,平面,所以平面(2)解:过点作,如图建立平面直角坐标系,因为,,所以,又,所以,则,,所以,所以,,,,所以,则,,,设平面的法向量为,则,令,则,,所以;设平面的法向量为,则,令,则,,所以;所以.设二面角的大小为,则,所以,即二面角的正弦值为.【2021年新高考1卷】15.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.【2021年新高考2卷】16.在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)取的中点为,连接,可证平面,从而得到面面.(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.【2020年新高考1卷(山东卷)】17.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】(1)证明见解析;(2).【解析】【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.【详解】(1)证明:在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面.(2)[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:因为,设,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB与平面QCD所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.[方法二]:定义法如图2,因为平面,,所以平面.在平面中,设.在平面中,过P点作,交于F,连接.因为平面平面,所以.又由平面,平面,所以平面.又平面,所以.又由平面平面,所以平面,从而即为与平面所成角.设,在中,易求.由与相似,得,可得.所以,当且仅当时等号成立.[方法三]:等体积法如图3,延长至G,使得,连接,,则,过G点作平面,交平面于M,连接,则即为所求.设,在三棱锥中,.在三棱锥中,.由得,解得,当且仅当时等号成立.在中,易求,所以直线PB与平面QCD所成角的正弦值的最大值为.【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB与平面QCD所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 氢氧化镁相关项目投资计划书范本
- 进排气系统:进排气管行业相关投资计划提议
- 房地产经纪服务合同的关键条款
- 2024年公司借款合同简易版
- 2024年商务合作:产品采购协议
- 会议室装修合同细则
- 2024年婚前协议书与离婚
- 2024年在线教育O2O平台合作运营合同
- 2024劳动合同法对幼儿园人力资源的影响分析
- 2024年共创共享合同:资源整合互利共赢
- 辽宁省地图课件介绍
- 《产业经济学》教学大纲
- 《设计三大构成》第四章课件
- 公共机构节能工作培训课件-课件
- 精力管理-优质ppt
- 读后续写:Emily with birth problems 文章分析+情节分析+续写段落赏析
- 苏教版(新教材)三年级上册小学科学第一单元测试卷含答案
- 肺心病危重病例讨论记录
- 湖北省武汉市江汉区2021-2022学年八年级上学期期中数学试题(含答案解析)
- GLP-1受体激动剂与DPP-4抑制剂幻灯
- 《汽车车载网络技术》期末复习试习题
评论
0/150
提交评论