




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.要使分式的值为0,你认为x可取得数是A.9 B.±3 C.﹣3 D.32.下列分式中,是最简分式的是()A. B. C. D.3.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.4.某青少年篮球队有名队员,队员的年龄情况统计如下表,则这名队员年龄的众数和中位数分别是()年龄(岁)人数A.15岁和14岁 B.15岁和15岁 C.15岁和14.5岁 D.14岁和15岁5.若方程组的解中x与y的值相等,则k为()A.4 B.3 C.2 D.16.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B7.如图,直线、的交点坐标可以看做下列方程组()的解.A. B. C. D.8.如果分式的值为0,那么x的值是()A.x=3 B.x=±3 C.x≠-3 D.x=-39.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为()A.6 B.3 C.4 D.210.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,已知点A(2,-2),在坐标轴上确定一点B,使得△AOB是等腰三角形,则符合条件的点B共有________个.12.如图,已知,则_________.13.化简:=_________.14.如图,已知一次函数和的图象交于点,则二元一次方程组的解是_______.15.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△ABC与△ABD全等时,则点D的坐标可以是_____.16.若分式的值为零,则x的值等于_____.17.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.18.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=_______________.三、解答题(共66分)19.(10分)在等边中,点,分别在边,上.(1)如图,若,以为边作等边,交于点,连接.求证:①;②平分.(2)如图,若,作,交的延长线于点,求证:.20.(6分)基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为.21.(6分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.22.(8分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:原式===,小强:原式==,显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.23.(8分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.24.(8分)计算:(1)()0﹣|﹣3|+(﹣1)2017+()﹣1(2)97525.(10分)已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.26.(10分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C(1,﹣3).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标___________.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选D.2、B【分析】根据最简分式的定义进行判断即可得解.【详解】解:A.,故本选项不是最简分式;B.的分子、分母没有公因数或公因式,故本选项是最简分式;C.,故本选项不是最简分式;D.,故本选项不是最简分式.故选:B【点睛】本题考查了最简分式,熟记最简分式的定义是进行正确判断的关键.3、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.4、C【分析】根据众数和中位数的定义判断即可.【详解】解:该组数据中数量最多的是15,所以众数为15;将该组数据从小到大排列:12,12,12,13,14,14,15,15,15,15,15,16其中位数为.故选:C.【点睛】本题主要考查数据统计中众数与中位数的定义,理解掌握定义是解答关键.5、C【解析】由题意得:x=y,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故选C.6、A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.7、A【分析】首先根据图象判定交点坐标,然后代入方程组即可.【详解】由图象,得直线、的交点坐标是(2,3),将其代入,得A选项,满足方程组,符合题意;B选项,不满足方程组,不符合题意;C选项,不满足方程组,不符合题意;D选项,不满足方程组,不符合题意;故选:A.【点睛】此题主要考查一次函数图象和二元一次方程组的综合应用,熟练掌握,即可解题.8、A【分析】直接利用分式的值为零则分子为零、分母不为零进而得出答案.【详解】∵分式的值为1,∴且,
解得:.
故选:A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.9、B【分析】利用垂直平分线的性质得到AD=BD=6,∠A=∠ABD=30°,再根据∠C=90°得到∠CBD=30°,从而根据30°所对的直角边是斜边的一半得到结果.【详解】解:∵DE垂直平分AB,∴AD=BD=6,∠A=∠ABD=30°,∵∠C=90°,∴∠CBD=∠ABC-∠ABD=30°,∴CD=BD=3,故选B.【点睛】本题考查了垂直平分线的性质,含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.10、C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.二、填空题(每小题3分,共24分)11、1【分析】OA是等腰三角形的一边,确定第三点B,可以分OA是腰和底边两种情况进行讨论即可.【详解】(1)若AO作为腰时,有两种情况,当A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,共有2个(除O点);当O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,有4个;(2)若OA是底边时,B是OA的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【点睛】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.12、45°【分析】根据三角形外角的性质得出∠ACD=∠2+∠B,再利用即可求出∠DCE的度数.【详解】∵∠ACD=∠2+∠B=∠1+∠DCE,∴,故答案为:45°.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的两个内角的和,熟记性质并熟练运用是解题的关键.13、19﹣6.【分析】利用完全平方公式计算.【详解】原式=18﹣6+1=19﹣6.故答案为19﹣6.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14、【分析】是图像上移2个单位,是图像上移2个单位,所以交点P也上移两个单位,据此即可求得答案.【详解】解:∵是图像上移2个单位得到,是图像上移2个单位得到,∴交点P(-4,-2),也上移两个单位得到P'(-4,0),∴的解为,即方程组的解为,故答案为:.【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.15、(0,﹣2)或(2,﹣2)或(2,2)【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【详解】解:∵△ABC与△ABD全等,如图所示:点D坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).【点睛】本题考查三角形全等的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解题的关键.16、1【解析】根据题意得:x﹣1=0,解得:x=1.此时1x+1=5,符合题意,故答案为1.17、,满足即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足,再代入(-1,0)求出a和b的等量关系即可.【详解】设一次函数解析式代入点(-1,0)得,解得所以我们令故其中一个符合条件的一次函数解析式是.故答案为:.【点睛】本题考察了一次函数的解析式,根据题意得出a和b的等量关系,列出其中一个符合题意的一次函数解析式即可.18、1或1【解析】∵一组数据2,3,4,5,x的方差与另一组数据5,1,7,8,9的方差相等,
∴这组数据可能是2,3,4,5,1或1,2,3,4,5,
∴x=1或1,
故答案是:1或1.三、解答题(共66分)19、(1)①见解析;②见解析;(2)见解析【分析】(1)①利用SAS即可证出△ABF≌△CAE,再根据全等三角形的性质即可证出结论;②过点D作DM⊥AF于M,作DN⊥EC交EC延长线于N,利用AAS证出△ADM≌△CDN,即可得出DM=DN,然后根据角平分线的判定定理即可证出结论;(2)在CB上截取一点G,使CF=FG,连接AG,利用SAS证出△EAC≌△GCA,可得CE=AG,∠AEC=∠CGA,然后利用ASA证出△AGF≌△PCF,可得AG=CP,从而证出结论.【详解】解:(1)①△ABC为等边三角形∴AB=CA,∠B=∠CAE=∠BAC=60°在△ABF和△CAE中∴△ABF≌△CAE∴②过点D作DM⊥AF于M,作DN⊥EC交EC延长线于N∵△ABF≌△CAE∴∠BAF=∠ACE∴∠AOC=180°-∠ACE-∠OAC=180°-∠BAF-∠OAC=180°-∠BAC=120°∴∠MDN=360°-∠AOC-∠DMO-∠DNO=60°∵△ACD为等边三角形∴DA=DC,∠ADC=60°∴∠ADC=∠MDN∴∠ADC-∠MDC=∠MDN-∠MDC∴∠ADM=∠CDN在△ADM和△CDN中∴△ADM≌△CDN∴DM=DN∴平分(2)在CB上截取一点G,使CF=FG,连接AG∵AE=2CF,CG=CF+FG=2CF∴AE=CG∵△ABC为等边三角形∴∠EAC=∠GCA=60°在△EAC和△GCA中∴△EAC≌△GCA∴CE=AG,∠AEC=∠CGA∵∠AEC=∠BCP∴∠CGA=∠BCP,即∠AGF=∠PCF在△AGF和△PCF中∴△AGF≌△PCF∴AG=CP∴CE=CP【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质和角平分线的判定,掌握等边三角形的性质、构造全等三角形的方法、全等三角形的判定及性质和角平分线的判定定理是解决此题的关键.20、(1)结论:.证明见解析;(2)结论:.证明见解析;(3)【分析】(1)说明△BAD≌OCAE(SAS)即可解答;(2)先说明△BAD≌△CAE,可得BD=CE、∠ACE=∠B,进一步可得∠DCE=90°,最后利用勾股定理即可解答;(3)作AE⊥AD.使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=7,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,最后利用勾股定理解答即可【详解】解:(1)结论:,理由如下:如图①中,∵,∴,即,在和中,,∴,∴,∴,即:;(2)结论:.理由如下:连接CE,由(1)得,,∴,,∴,∴.∴(3)作AE⊥4D,使4E=AD,连接CE,DE.∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴BD=CE=7,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°。∴DE==√8.∵∠DAE=90°∴,即∴AD=.故答案为.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、勾股定理等知识,正确添加常用辅助线,构造全等三角形解决问题是解答本题的关键.21、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km【分析】(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.【详解】(1)设y1=k1x,由图可知,函数图象经过点(10,600),∴10k1=600,解得:k1=60,∴y1=60x(0≤x≤10),设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则,解得:∴y2=-100x+600(0≤x≤6);(2)由题意,得60x=-100x+600x=,当0≤x<时,S=y2-y1=-160x+600;当≤x<6时,S=y1-y2=160x-600;当6≤x≤10时,S=60x;即;(3)由题意,得①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,解得x=,此时,A加油站距离甲地:60×=150km,②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,解得x=5,此时,A加油站距离甲地:60×5=300km,综上所述,A加油站到甲地距离为150km或300km.22、(1)②;(2)4,5;(3)见解析.【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】(1)②分式=,不可约分,∴分式是和谐分式,故答案为②;(2)∵分式为和谐分式,且a为正整数,∴a=4,a=﹣4(舍),a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式====故答案为小强通分时,利用和谐分式找到了最简公分母.【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.23、(1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.【分析】(1)由“SAS”可证△ACD≌△ABE,可得BE=CD;(2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.【详解】解:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,且AB=AC,AD=AE,∴△ACD≌△ABE(SAS)∴BE=CD;(2)如图2,①∵∠BAC=∠EAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.24、(1)﹣1;(2).【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简得出答案.【详解】(1)原式=1﹣3﹣1+2=﹣1;(2)原式=9142015.【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.25、(1)见解析;(2)①见解析;②见解析【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;
(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC即可得证;
②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度BIM技术应用与质量保证服务合同
- 二零二五年度企业环境风险评估与安全防控合同
- 二零二五年电子游戏设备采购合同丰富娱乐市场
- 二零二五年度工业园区场地租赁合同标准范本
- 二零二五年度包装设计创新大赛合作合同
- 2025版智能化办公场地租赁服务合同示范文本
- 2025版彩钢瓦结构屋面设计与安装施工合同
- 2025版安置房室内环保材料采购及施工合同
- 二零二五年度新能源汽车充电设施投资合同
- 二零二五年北京联通5G套餐境外漫游服务合同
- 中专入学面试题库及答案
- 车间菌种人员管理制度
- 山东省历年中考作文题(2012-2022)
- 超星尔雅学习通《红色经典影片与近现代中国发展(首都师范大学)》2025章节测试附答案
- 内镜技术进修心得分享与模板
- 医疗护理医学培训 简易呼吸气囊的介绍及使用课件
- 产品安装及质量保障措施
- 《典型生物质颗粒的安全性能分析综述》2200字
- 商业球房运营方案
- 事业单位个人述职报告(汇编9篇)
- 驾培行业安全培训
评论
0/150
提交评论