




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形2.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.3.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④ B.①④ C.②③④ D.①②③4.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.5.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.6.若,,则以为根的一元二次方程是()A. B.C. D.7.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个8.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.9.如图,已知∥∥,,那么的值是()A. B. C. D.210.若是方程的两根,则实数的大小关系是()A. B. C. D.11.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.12.下列图形是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.若分别是方程的两实根,则的值是__________.14.在菱形中,周长为,,则其面积为______.15.如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD是矩形.16.设、是方程的两个实数根,则的值为_____.17.如图,在中,,,,点为边上一点,,将绕点旋转得到(点、、分别与点、、对应),使,边与边交于点,那么的长等于__________.18.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______三、解答题(共78分)19.(8分)如图,已知点是外一点,直线与相切于点,直线分别交于点、,,交于点.(1)求证:;(2)当的半径为,时,求的长.20.(8分)已知二次函数.(1)当时,求函数图象与轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求的值.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)图①中所画的四边形是中心对称图形;(2)图②中所画的四边形是轴对称图形;(3)所画的两个四边形不全等.24.(10分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.25.(12分)(1)解方程:(2)某快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均増长率.26.成都市某景区经营一种新上市的纪念品,进价为20元/件,试营销阶段发现;当销售单价是30元时,每天的销售量为200件;销售单价每上涨2元,每天的销售量就减少10件.这种纪念品的销售单价为x(元).(1)试确定日销售量y(台)与销售单价为x(元)之间的函数关系式;(2)若要求每天的销售量不少于15件,且每件纪念品的利润至少为30元,则当销售单价定为多少时,该纪念品每天的销售利润最大,最大利润为多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.2、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.3、D【详解】∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵=,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.4、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.5、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【点睛】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.6、B【分析】由已知条件可得出,再根据一元二次方程的根与系数的关系,,分别得出四个方程的两个根的和与积,即可得出答案.【详解】解:∵,∴A.,方程的两个根的和为-3,积为-2,选项错误;B.,方程的两个根的和为3,积为2,选项正确;C.,方程的两个根的和为-3,积为2,选项错误;D.,方程的两个根的和为3,积为-2,选项错误;故选:B.【点睛】本题考查的知识点是根与系数的关键,熟记求根公式是解此题的关键.7、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.8、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.9、A【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB∥CD∥EF,∴AC:CE=BD:DF,∵,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:AE=1:3=.故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.10、A【分析】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图即可判断.【详解】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图如下:从函数图象可以看出:故选:A【点睛】本题考查的是二次函数与一元二次方程的关系,掌握抛物线与x轴的交点的横坐标为y=0时,一元二次方程的根是关键.11、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.12、B【解析】根据中心对称图形的定义,在平面内,把图形绕着某个点旋转,如果旋转后的图像能与原图形重合,就为中心对称图形.【详解】选项A,不是中心对称图形.选项B,是中心对称图形.选项C,不是中心对称图形.选项D,不是中心对称图形.故选B【点睛】本题考查了中心对称图形的定义.二、填空题(每题4分,共24分)13、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】∵分别是方程的两实根,∴=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.14、8【分析】根据已知求得菱形的边长,再根据含的直角三角形的性质求出菱形的高,从而可求菱形的面积.【详解】解:如图,作AE⊥BC于E,∵菱形的周长为,∴AB=BC=4,∵,∴AE==2,∴菱形的面积=.故答案是:8.【点睛】此题主要考查了菱形的性质,利用含的直角三角形的性质求出菱形的高是解题的关键.15、AC=BD或∠ABC=90°【分析】根据矩形的判定方法即可解决问题;【详解】若使平行四边形ABCD变为矩形,可添加的条件是:
AC=BD(对角线相等的平行四边形是矩形);∠ABC=90°(有一个角是直角的平行四边形是矩形)等,任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.
故答案为:AC=BD或∠ABC=90°【点睛】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.16、-1【分析】根据根与系数的关系可得出,,将其代入中即可得出结论.【详解】∵、是方程的两个实数根,∴,,∴.故答案为-1.【点睛】本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.17、【分析】如图,作PH⊥AB于H.利用相似三角形的性质求出PH,再证明四边形PHGC′是矩形即可解决问题.【详解】如图,作PH⊥AB于H.
在Rt△ABC中,∠C=90°,AC=5,sinB=,
∴=,
∴AB=13,BC==12,
∵PC=3,
∴PB=9,
∵∠BPH∽△BAC,
∴,
∴,
∴PH=,
∵AB∥B′C′,
∴∠HGC′=∠C′=∠PHG=90°,
∴四边形PHGC′是矩形,
∴CG′=PH=,
∴A′G=5-=,
故答案为.【点睛】此题考查旋转变换,平行线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(共78分)19、(1)证明见解析;(2)1.【分析】(1)连接OB,由切线的性质可得OB⊥PA,然后根据直径所对的圆周角为直角得到∠CBD=90°,再根据等角的余角相等推出∠BCD=∠BOA,由等量代换得到∠CBO=∠BOA,即可证平行;(2)先由勾股定理求出BD,然后由垂径定理得到DE,求出OE,再利用△ABE∽△DOE的对应边成比例,即可求出AE.【详解】(1)如图,连接OB,∵直线PA与相切于点B,∴OB⊥PA,∴∠PAO+∠BOA=90°∵CD是的直径∴∠CBD=90°,∠PDB+∠BCD=90°又∵∠PAO=∠PDB∴∠BOA=∠BCD∵OB=OC∴∠BCD=∠CBO∴∠CBO=∠BOA∴OA∥BC(2)∵半径为10,,∴BD=由(1)可知∠CBD=90°,OA∥BC∴OE⊥BD∴是的中点,DE=BD=∴∵,∴,∴,即∴.【点睛】本题考查圆的综合问题,熟练掌握切线的性质与相似三角形的判定与性质是解题的关键.20、(1)和;(2)或-1.【分析】(1)把k=2代入,得.再令y=0,求出x的值,即可得出此函数图象与x轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,列出方程求解即可.【详解】(1)∵,∴,令,则,解得,∴函数图象与轴的交点坐标为和.(2)∵函数图象的对称轴与原点的距离为2,∴,解得或-1.【点睛】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.21、旗杆AB的高度为【分析】首先根据三角形外角的性质结合等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BE•sin60,然后可得AB的长.【详解】∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20(m),在Rt△BEC中,BC=BE•sin60°,∴AB=BC﹣AC,答:旗杆AB的高度为.【点睛】此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.22、(1)20%;(2)①10;②不能.【解析】试题分析:(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+11.1.结合函数图象的性质进行解答即可.试题解析:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.61,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤10,即A型健身器材最多可购买10套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+11.1.∵﹣0.1<0,∴y随m的增大而减小,∴m=10时,y最小.∵m=10时,y最小值=﹣01×10+11.1=10.1(万元).又∵10万元<10.1万元,∴该计划支出不能满足养护的需要.考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.23、(1)见解析;(2)见解析;(3)见解析【分析】(1)设小正方形的边长为1,由勾股定理可知,由图,结合题中要求可以OM,ON为邻边画一个菱形;(2)符合题意的有菱形、筝形等是轴对称图形;(3)图①和图②的两个四边形不能是完全相同的.【详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区块链技术助力企业数字化转型与风险控制
- 利用区块链技术打造更加安全的投资保障环境
- 2025年高考政治必修1《中国特色社会主义》框架和体系设计说明
- 2025至2030中国长租公寓市场营销优势及未来发展模式研究报告
- 有关保育员的个人工作总结(29篇)
- 装修主管工作职责职能(19篇)
- 健康管理的数字化升级基于医疗大数据的策略分析
- 区块链技术在网络安全领域的应用及趋势预测
- 区块链技术如何保障数据透明与防篡改的双重需求
- 【名校名卷】安徽省定远重点中学2018-2019学年高二上学期第三次月考英语试题
- GA 255-2022警服长袖制式衬衣
- GB/T 5202-2008辐射防护仪器α、β和α/β(β能量大于60keV)污染测量仪与监测仪
- GB/T 39560.4-2021电子电气产品中某些物质的测定第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞
- GB/T 3452.4-2020液压气动用O形橡胶密封圈第4部分:抗挤压环(挡环)
- 计划生育协会基础知识课件
- 【教材解读】语篇研读-Sailing the oceans
- 抗肿瘤药物过敏反应和过敏性休克
- 排水管道非开挖预防性修复可行性研究报告
- 交通工程基础习习题及参考答案
- 线路送出工程质量创优项目策划书
- 100T汽车吊性能表
评论
0/150
提交评论