河南省郑州市第八中学2022年数学九年级第一学期期末预测试题含解析_第1页
河南省郑州市第八中学2022年数学九年级第一学期期末预测试题含解析_第2页
河南省郑州市第八中学2022年数学九年级第一学期期末预测试题含解析_第3页
河南省郑州市第八中学2022年数学九年级第一学期期末预测试题含解析_第4页
河南省郑州市第八中学2022年数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个2.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和3.抛物线y=-(x-2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3) B.开口向上,顶点坐标(2,-3)C.开口向下,顶点坐标(-2,3) D.开口向上,顶点坐标(-2,-3)4.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.485.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A. B. C. D.6.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.7.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.2 C. D.28.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为()A.12 B.7 C.6 D.49.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=10.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个11.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°12.下列结论正确的是()A.三角形的外心是三条角平分线的交点B.平分弦的直线垂直于弦C.弦的垂直平分线必平分弦所对的两条弧D.直径是圆的对称轴二、填空题(每题4分,共24分)13.定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是_____.14.若3a=4b(b≠0),则=_____.15.抛物线y=x2+2x与y轴的交点坐标是_____.16.若方程有两个相等的实数根,则m=________.17.在△ABC中,若AB=5,BC=13,AD是BC边上的高,AD=4,则tanC=_____.18.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.三、解答题(共78分)19.(8分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?20.(8分)如图,AB是的弦,D为半径OA上的一点,过D作交弦AB于点E,交于点F,且求证:BC是的切线.21.(8分)先化简,再求值:,然后从0,1,2三个数中选择一个恰当的数代入求值.22.(10分)如图,我国海监船在处发现正北方向处有一艘可疑船只,正沿南偏东方向航行,我海监船迅速沿北偏东方向去拦裁,经历小时刚好在处将可疑船只拦截,已知我海监船航行的速度是每小时海里,求可疑船只航行的距离.23.(10分)如图,矩形中,,,点是边上一定点,且.(1)当时,上存在点,使与相似,求的长度.(2)对于每一个确定的的值上存在几个点使得与相似?24.(10分)放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70,请回答下列问题:(1)写出油箱注满油后,汽车能够行使的总路程与平均耗油量之间的函数关系式;(2)小明的爸爸以平均每千米耗油0.1的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?25.(12分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积26.某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)

参考答案一、选择题(每题4分,共48分)1、C【解析】①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;

②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;

③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,结论①错误;

②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),

∴2≤c≤3,

∴-1≤a≤-,结论②正确;

③∵a<0,顶点坐标为(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴抛物线y=ax2+bx+c与直线y=n只有一个交点,

又∵a<0,

∴抛物线开口向下,

∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,

∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.

故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.2、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.3、A【解析】根据抛物线的解析式,由a的值可得到开口方向,由顶点式可以得到顶点坐标.【详解】解:∵y=-(x-2)2+3∴a=-1<0,抛物线的开口向下,顶点坐标(2,3)故选A【点睛】本题考查二次函数的性质,解题的关键是根据二次函数的解析式可以得到开口方向、对称轴、顶点坐标等性质.4、C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.5、B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.6、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.7、B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.8、C【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【详解】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b.∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),两边平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故选:C.【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键.9、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.11、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12、C【分析】根据三角形的外心定义可以对A判断;根据垂径定理的推论即可对B判断;根据垂径定理即可对C判断;根据对称轴是直线即可对D判断.【详解】A.三角形的外心是三边垂直平分线的交点,所以A选项错误;B.平分弦(不是直径)的直径垂直于弦,所以B选项错误;C.弦的垂直平分线必平分弦所对的两条弧,所以C选项正确;D.直径所在的直线是圆的对称轴,所以D选项错误.故选:C.【点睛】本题考查了三角形的外接圆与外心、垂径定理、圆的有关概念,解决本题的关键是掌握圆的知识.二、填空题(每题4分,共24分)13、【分析】如图所示,,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间不含点,即可求解.【详解】解:,故抛物线的顶点为:;抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,∴,如图所示,图象实心点为8个“整点”,则符合条件的抛物线过点和点上方,并经过点和点下方,当抛物线过点上方时,,解得:;当抛物线过点上方时,,解得:;当抛物线过点下方时,,解得:;当抛物线过点下方时,,解得:;∵四个条件同时成立,∴故答案为:.【点睛】本题考查根据二次函数的图象确定二次函数的字母系数的取值范围.找出包含“整点”的位置,利用数形结合的数学思想是解题的关键,难度较大.14、【分析】依据3a=4b,即可得到a=b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=b,∴===.故答案为:.【点睛】本题主要考查了比例的性质,求出a=b是解题的关键.15、(0,0)【解析】令x=0求出y的值,然后写出即可.【详解】令x=0,则y=0,所以,抛物线与y轴的交点坐标为(0,0).故答案为(0,0).【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键.16、4【解析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:417、或【分析】先根据勾股定理求出BD的长,再分高AD在△ABC内部和外部两种情况画出图形求出CD的长,然后利用正切的定义求解即可.【详解】解:在直角△ABD中,由勾股定理得:BD==3,若高AD在△ABC内部,如图1,则CD=BC﹣BD=10,∴tanC=;若高AD在△ABC外部,如图2,则CD=BC+BD=16,∴tanC=.故答案为:或.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.18、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

∵坝顶部宽为2m,坝高为6m,

∴DC=EF=2m,EC=DF=6m,

∵α=30°,

∴BE=(m),

∵背水坡的坡比为1.2:1,

∴,

解得:AF=5(m),

则AB=AF+EF+BE=5+2+6=(7+6)m,

故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.三、解答题(共78分)19、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.【分析】(1)首先设一次函数解析式为:y=kx+b,然后根据函数图象,将两组对应值代入解析式即可得解;(2)结合点和函数图象即可得出其表示的实际意义;(3)根据题意列出一元二次方程,求解即可【详解】(1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)函数图象中点A表示的实际意义是当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克.(3)由题意得:(60﹣40﹣x)(10x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元..【点睛】此题主要考查一次函数图象的实际应用以及一元二次方程的实际应用,解题关键是根据题意,列出关系式.20、见解析【解析】试题分析:连接OB,要证明BC是⊙O的切线,即要证明OB⊥BC,即要证明∠OBA+∠EBC=90°,由OA=OB,CE=CB可得:∠OBA=∠OAB,∠CBE=∠CEB,所以即要证明∠OAB+∠CEB=90°,又因为∠CEB=∠AED,所以即要证明∠OAB+∠AED=90°,由CD⊥OA不难证明.试题解析:证明:连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线.点睛:本题主要掌握圆的切线的证明方法,一般我们将圆心与切点连接起来,证明半径与切线的夹角为90°.21、,-1.【解析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后选择使原式有意义的数值代入化简后的结果进行计算即可.【详解】原式=,由x-2≠0且(x-1)2≠0可得x≠2且x≠1,所以x=0,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解题的关键.22、70海里.【分析】过作于点,分别利用三角函数解和,即可进行求解.【详解】过作于点,根据题意得:(海里),在中,(海里),在中,(海里),答:可疑船只航行的距离为70海里.【点睛】本题考查了解直角三角形的应用,用到的知识点是方向角含义、三角函数的定义,关键是根据题意画出图形,构造直角三角形.23、(1)或1;(2)当且时,有1个;当时,有2个;当时,有2个;当时,有1个.【分析】(1)分△AEF∽△BFC和△AEF∽△BCF两种情形,分别构建方程即可解决问题;(2)根据题意画出图形,交点个数分类讨论即可解决问题;【详解】解:(1)当∠AEF=∠BFC时,

要使△AEF∽△BFC,需,即,解得AF=1或1;

当∠AEF=∠BCF时,

要使△AEF∽△BCF,需,即,解得AF=1;

综上所述AF=1或1.(2)如图,延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;

连结CE,以CE为直径作圆交AB于点F2、F1.当m=4时,由已知条件可得DE=1,则CE=5,即图中圆的直径为5,可得此时图中所作圆的圆心到AB的距离为2.5,等于所作圆的半径,F2和F1重合,即当m=4时,符合条件的F有2个,当m>4时,图中所作圆和AB相离,此时F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论