版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE6-二轮复习专题五:立体几何§5.3空间中的垂直关系【学习目标】1.理解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列通项公式的意义(数列是自变量为正整数的一类函数.)3.理解数列的函数特征,能利用数列的周期性,单调性解决数列的有关问题。4.以极度的热情投入到课堂学习中,体验学习的快乐。【学法指导】先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;4.重点理解的内容:【高考方向】以三视图为载体,考查空间几何体面积、体积的计算.考查空间几何体的侧面展开图及简单的组合体问题.【课前预习】:一、知识网络构建高考真题再现[2014·浙江卷]如图15,在四棱锥ABCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=eq\r(2).(1)证明:DE⊥平面ACD;(2)求二面角BADE的大小.解:(1)证明:在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=eq\r(2),由AC=eq\r(2),AB=2,得AB2=AC2+BC2,即AC⊥BC.又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE.又DE⊥DC,从而DE⊥平面ACD.(2)方法一:过B作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG.由(1)知DE⊥AD,则FG⊥AD.所以∠BFG是二面角BADE的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC.又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB.由AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=eq\r(2),得AD=eq\r(6).在Rt△AED中,由ED=1,AD=eq\r(6),得AE=eq\r(7).在Rt△ABD中,由BD=eq\r(2),AB=2,AD=eq\r(6),得BF=eq\f(2\r(3),3),AF=eq\f(2,3)AD.从而GF=eq\f(2,3)ED=eq\f(2,3).在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=eq\f(5\r(7),14),BG=eq\f(2,3).在△BFG中,cos∠BFG=eq\f(GF2+BF2-BG2,2BF·GF)=eq\f(\r(3),2).所以,∠BFG=eq\f(π,6),即二面角BADE的大小是eq\f(π,6).方法二:以D为原点,分别以射线DE,DC为x,y轴的正半轴,建立空间直角坐标系Dxyz,如图所示.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,eq\r(2)),B(1,1,0).设平面ADE的法向量为m=(x1,y1,z1),平面ABD的法向量为n=(x2,y2,z2).可算得AD=(0,-2,-eq\r(2)),AE=(1,-2,-eq\r(2)),eq\o(DB,\s\up6(→))=(1,1,0).由eq\b\lc\{(\a\vs4\al\co1(m·AD=0,,m·\o(AE,\s\up6(→))=0,))即eq\b\lc\{(\a\vs4\al\co1(-2y1-\r(2)z1=0,,x1-2y1-\r(2)z1=0,))可取m=(0,1,-eq\r(2)).由eq\b\lc\{(\a\vs4\al\co1(n·\o(AD,\s\up6(→))=0,,n·\o(DB,\s\up6(→))=0,))即eq\b\lc\{(\a\vs4\al\co1(-2y2-\r(2)z2=0,,x2+y2=0,))可取n=(1,-1,eq\r(2)).于是|cos〈m,n〉|=eq\f(|m·n|,|m|·|n|)=eq\f(3,\r(3)×2)=eq\f(\r(3),2).由题意可知,所求二面角是锐角,故二面角BADE的大小是eq\f(π,6).基本概念检测1.(2010·浙江改编)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.3.(2009·四川卷改编)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的序号是________.①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④直线PD与平面ABC所成的角为45°.4.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)【课中研讨】:例1.[2014·福建卷]在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图15所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.例2.如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2(2011·江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;平面BEF⊥平面PAD.例3.(2013年高考新课标1(理)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.例4.[2014·湖南卷]如图16所示,四棱柱ABCDA1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD.因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C.故O1O⊥底面ABCD.(2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1.由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.图(a)又因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.进而OB1⊥C1H.故∠C1HO1是二面角C1OB1D的平面角.不妨设AB=2.因为∠CBA=60°,所以OB=eq\r(3),OC=1,OB1=eq\r(7).在Rt△OO1B1中,易知O1H=eq\f(OO1·O1B1,OB1)=2eq\r(\f(3,7)).而O1C1=1,于是C1H=eq\r(O1Ceq\o\al(2,1)+O1H2)=eq\r(1+\f(12,7))=eq\r(\f(19,7)).故cos∠C1HO1=eq\f(O1H,C1H)=eq\f(2\r(\f(3,7)),\r(\f(19,7)))=eq\f(2\r(57),19).即二面角C1OB1D的余弦值为eq\f(2\r(57),19).方法二:因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥BD.又O1O⊥底面ABCD,从而OB,OC,OO1两两垂直.图(b)如图(b),以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,不妨设AB=2.因为∠CBA=60°,所以OB=eq\r(3),OC=1,于是相关各点的坐标为O(0,0,0),B1(eq\r(3),0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的一个法向量,则eq\b\lc\{(\a\vs4\al\co1(n2·\o(OB,\s\up6(→))1=0,,n2·\o(OC,\s\up6(→))1=0,))即eq\b\lc\{(\a\vs4\al\co1(\r(3)x+2z=0,,y+2z=0.))取z=-eq\r(3),则x=2,y=2eq\r(3),所以n2=(2,2eq\r(3),-eq\r(3)).设二面角C1OB1D的大小为θ,易知θ是锐角,于是cosθ=|cos〈,〉|=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(n1·n2,|n1|·|n2|)))=eq\f(2\r(3),\r(19))=eq\f(2\r(57),19).故二面角C1OB1D的余弦值为eq\f(2\r(57),19).【课后巩固】1.(2010·扬州月考)已知直线a,b和平面α,β,且a⊥α,b⊥β,那么α⊥β是a⊥b的________条件.2.已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题:①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,n⊂β,则α⊥β;④若m∥α,α∩β=n,则m∥n.其中正确命题是________(填序号).3.设直线m与平面α相交但不垂直,给出以下说法:①在平面α内有且只有一条直线与直线m垂直;②过直线m有且只有一个平面与平面α垂直;③与直线m垂直的直线不可能与平面α平行;④与直线m平行的平面不可能与平面α垂直.其中错误的是________.4.(2009·江苏)设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题中,真命题的序号是__________(写出所有真命题的序号).5.[2014·全国卷]如图11所示,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版环保物业合同小区共建项目3篇
- 体育竞技:管理创奖励运动精神
- 环保设备证照管理办法
- 眼镜加工制造手册
- 体育产业税收优惠指南
- 劳务派遣工作环境优化
- 娱乐行业证照规定
- 高端教育社区按揭合同模板
- 高新技术企业劳动合同模板
- 多功能培训室租赁合同模板
- 物理实验知到智慧树章节测试课后答案2024年秋沈阳理工大学
- 2024年01月22503学前儿童健康教育活动指导期末试题答案
- 网络信息安全工程师招聘面试题及回答建议(某大型国企)2025年
- 肺癌的介入治疗护理
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-上(单选题)
- 购物广场项目成本与支出分析
- 期末测评(基础卷二)-2024-2025学年一年级上册数学人教版
- 深圳大学《数值计算方法》2021-2022学年第一学期期末试卷
- 《NPI流程简介》课件
- 浙江省宁波市2023-2024学年高一上学期1月期末地理试题 附答案
- 服装厂安全培训
评论
0/150
提交评论