API3000LCMSMS操作培训手册课件_第1页
API3000LCMSMS操作培训手册课件_第2页
API3000LCMSMS操作培训手册课件_第3页
API3000LCMSMS操作培训手册课件_第4页
API3000LCMSMS操作培训手册课件_第5页
已阅读5页,还剩221页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

API3000OperatorTrainingCourse

Analyst-NT

FosterCityCAPALLabAPI3000OperatorTrainingCouWhatisLC/MSLC:LiquidChromatography

MS:MassSpectrometer

aninstrumentthatproducesionsandseparatestheminthegasphaseaccordingtotheirmass-to-chargeratio(m/z)WhatisLC/MSLC:LiquidChromaElementMassAveragemassofallnaturalisotopesCarbon AbundanceIntegerMass12C=12.0000Da98.91% 1213C=13.0034 1.09% 13(12.0000)(0.9891)+(13.0034)(.011)=12.011ElementMassAveragemassofalNaturalisotopesAbundanceElement

Abundance ExactMass

X+1Factor

X+2Factor

1H 99.99 1.00782H 0.01 2.0141

10B 49.9 10.012954.03NB11B 50.1 11.0093

12C 98.91 12.000013C 1.09 13.00341.1NC0.0060(NC*NC)14N 99.63 14.003115N 0.37 15.00010.37NN35Cl 75.77 34.968937Cl 24.23 36.965932.5NCl79Br 50.7 78.9183

81Br 49.3 80.916398.0NBr

127I 100 126.9045

NaturalisotopesAbundanceElemNaturalIsotopesAbundanceElement

Abundance ExactMass

X+1Factor

X+2Factor

16O 99.76 15.994917O 0.04 16.99910.04NO18O 0.20 17.99920.02NO19F 100 18.998428Si 92.2 27.976929Si 4.7 28.97655.1Nsi30Si 2.2 29.97383.4NSi31P 100 30.973832S 95.0 31.972133S0.75 32.97150.8NS

34S 4.22 33.9679 4.4NsNaturalIsotopesAbundanceElemDefiningthemassesIntegerMass-SumofProtonsandNeutronsofanelementNominalMass-SumoftheintegermassesofthemostabundantisotopesoftheelementsinacompoundAverageMass-SumoftheatomicweightsoftheelementsinacompoundExactmass-Sumofthemostabundantisotopesofelementsinacompound-TheoreticalcalculationonlyAccuratemass-experimentallydeterminedmassMonoisotopicmass-sumoftheexactmassesofthemostabundantisotopesofelementsinacompoundDefiningthemassesIntegerMasExamplesofMassesHaloperidol:C21H23NO2FClNominalMass: 375AverageMass: 375.8737ExactMass: 375.1401Monoisotopicmass 375.1401m/z365376386378100755025%Intensity

C21H23NO2FClExamplesofMassesHaloperidol:MultiplyChargedIonsMultiplyChargedIons:Signal=(MW+N)/N(N=#ofcharges)SincetheQuadseparatesionsbasedonm/zratioandionscanhavemultiplechargesinIonSpray.Aseriesofmultiplychargedionsisusuallyproducedforlargermolecules.MultiplyChargedIonsMultiplyAPI3000LCMSMS操作培训手册CommonadductsPOSITIVEMODENa22Da.higherthanM+HK38Da.higherthanM+HLi9Da.higherthanM+HNH418Da.higherthanM+HACN41Da.higherthanM+HNEGATIVEMODETFA114Da.higherthenM-H(113and227background)Acetate60Da.higherthenM-HFormic46Da.higherthenM-HCommonadductsGASPHASEAcid-BaseScale

forPositiveIon&NeutralMoleculesGASPHASEAcid-BaseSGASPHASEAcid-BaseScaleforNegativeIons&NeutralMoleculesGASPHASEAcid-BaseScaleforIonizationSuppressionCompoundsThatCauseSensitivitySuppressionSaltscaninterferewithionizationandcanclustertocomplicatespectrum(butalsoaidinidentification)Strongbasesorquaternaryaminescaninterferewithpositivemodeanalytes,e.g.Triethylamine(TFA)Acid-Sulfuric/SulfonicacidsandTFAinterfereinnegativemodePhosphatebufferandnon-volatileionpairingagents(e.g.SDS)cancauseseveresuppressionandcomplexspectrumDimerization([2M+H]+)canoccurathighconcentration,leadingtonon-linearityduringquantitationDimerSignalatm/z=(MW*2)+1Cancausenon-linearityathighconcentrationsIonizationSuppressionCompoundBasicstepsofLC/MS

analysisSampleIntroduction:inliquidstatesbysyringepumporLCpumpIonization:IonSpray,APCIVacuumsystem:preventcollisionsofionswithresidualgasmoleculesintheanalyzerduringtheflightfromionsourcetothedetectorInterface:

preventexcessivegasloadMassanalysis:QuadrupoleMassfilter,TimeofFlightDataprocesssystem:computerbased

BasicstepsofLC/MSanalysisSAPIAnalyticalDomainsNeutral101102103104105MolecularWeightIonicAnalytePolarityIonSprayAPCIGC/MSAPIAnalyticalDomainsNeutral1API3000LCMSMS操作培训手册QuadrupoleTheoryThreetypesofvoltagespresentonaQuadrupole:RFp-p–Fixedfrequency(1MHz)oscillatingvoltage(VACMass);establishesharmoniciontrajectories.FilteringDC(FDC)–DCvoltagedifferencebetweenpoles(lineartoRFp-p)thatdefinestheresolution.RodOffsetVoltage–LowDCvoltagethatdefinesaxialionenergy(velocitythroughquadrupole).“RFonly”modemeans:NoFDCbetweenpoles;onlyRFp-p,RodOffsetpresent.Quad.isin“TotalIonMode”(transmittingallions,notfiltering).QuadrupoleTheoryThreetypesoAPI3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册API3000LCMSMS操作培训手册QuadrupoleTheory(cont.)Quadrupolesanalyzersoperateinconstantpeakwidthmode(SameResolutionoverMassrange)APIResolutionSpecification

Unit=0.7(±0.1amuFWHH)High=.5(±0.1amuFWHH)Low=~1.1(±0.1amuFWHH)Usercansethigherresolutiondependingonproblemtobesolved(i.e.,settingsingly-chargedresolutionto0.5–0.6amuFWHHaidsindetectingdoubly-chargedions)ResolutionoffsetssettheDC/RFratioatvariouspointsalongmassaxisResolutionAtUnit,HighandLowautomaticallytunedItisalwaysrecommendedtocalibratemassaxisafterresolutionisadjustedforaquadrupoleQuadrupoleTheory(cont.)QuadrResolution=0.7amuFWHHLC2Tune1.4b11.pictLC2Tune1.4b11.pictResolution=0.7amuFWHHLC2TuResolution=0.6amuFWHHResolution=0.6amuFWHHResolution=0.5amuFWHHResolution=0.5amuFWHHQuadrupoleTheory&IonEnergyIonenergy

EffectsResolutionandPeakShapeLowerenergy(slower)=morecycles,betterresolutionHigherenergy(faster)=lesscycles,lowerresolution(typically0.5–2eV)isgivenbythevoltagedifferencebetweentheions“startingpotential”(Q0)andtheQ1rodoffset(RO1)(timesthenumberofcharges)Inc.IEalsoinc.Eofionstodistortpeakshape.AlwaysatradeoffbetweenresolutionandsensitivityinallquadrupoleanalyzersQuadrupoleTheory&IonEnergyQuadrupoleTheory&IonEnergyQ1Scan=n(Q0-RO1);Q1IE=0.5-2eVQ3Scan=n(RO2-RO3);Q3IE=(1-6eV)CollisionEnergyforMS/MS:CADenergy=n(Q0-RO2);n=#chargesProductionenergy=n(RO2-RO3);n=#chargesthisaffectsresolutionofproductions(lowerenergyyieldsbetterresolution)QuadrupoleTheory&IonEnergyIonEnergiesExamplesofanIonEnergyof.5eVinQ1LowerVelocitythroughQuadsallowsforgreaterfilteringandbetterresolutionSensitivityisofcourselostasresolutionincreasesIonEnergiesExamplesofanIIonEnergiesExamplesofanIonEnergyof1.5eVinQ1HighervelocitythroughQuadsallowsforlessfilteringandworseresolutionSensitivityisofcoursegainedasresolutiondecreasesIonEnergiesExamplesofanIResolutiondefinitionforMagneticSectorinstrumentsResolutiondefinitionfor: Quadrupole TOFTheResolutionRe-evolutionResolutiondefinitionResolutiAPI3000HardwareOverviewAPI3000LCMSMS操作培训手册API3000

PERFORMANCE:PerformanceSpecificationsQ1MassRange:5to3000m/zQ3MassRange:5to3000m/zDynamicRange:1to4e6cpsMassAccuracy:0.01%overtheentiremassrangeScanSpeed:2400amu/sAPI3000PERFORMANCE:PerformancAPI-3000IonPathAPI-3000IonPathSystemOverviewSampleIntroductionMethodsSampleInletsandIonizationTypesVacuumInterfaceCurtaingasinterfaceDifferentiallypumpedinterfaceVacuumChamber&AnalyzerRegionQuadrupoles,collisioncell&ionopticsDetectorRegionSystemOverviewSampleIntroducAPI3000GasFunctionandSettingAPI3000GasFunctionandSetti10portvalcovalveconfiguration10portvalcovalveconfigurat10portvalcovalveconfiguration10portvalcovalveconfigurat10portvalcovalveconfiguration10portvalcovalveconfiguratSampleIntroductionMethodsContinuousInfusion-Providesaccurate,lowflowrates.Allowscontinuoussampleintroductionfortuningandoptimization.FlowInjectionAnalysis(FIA)-CombiChem.andSourceOptimizationLiquidChromatograph-Allowsseparationsofmixtureswithmicroborecolumnsatlowflowsorconventionalcolumnsathighflows.SampleIntroductionMethodsConIonizationSourcesTurboIonSpray-IonSprayoptionwhichutilizesaheatedauxiliarygasflowtoprovidebettersensitivityathigherflowrates(2µL/min—1mL/min)HeatedNebulizer-Sampleinletforflowratesof0.2-2.0mL/min.Usesheat(400–500°C)andnebulizergastovaporizeHPLCeluentand“steamdistill”sampleintothegasphaseforAPCI.CoronaDischarge-HighvoltageneedletoionizecompoundsinthegasphasebyAtmosphericPressureChemicalIonization(APCI).IonizationSourcesIonizationSources:

TurboIonSpray1stpictureshowsaturboionspraywithand“hairdryer”portiononthebottom.2ndpictureshowsthesourcefromtherearwithadjustmentoptions3rdpictureshowsthegasinputs,heatercablesandinterlocksIonizationSources:

TurboIonSpTurboIonSpraySource:ISVoltage-DeclustersandgeneratesionsIS-VerypHdependentforchargingofmoleculeNebulizer&TurboGas-Declustersandde-solvatesIons~10,000,000ionsoncolumn4,000,000-40,000ionsOperatorImpactArea~1000ionsHighVoltageSampleNebulizerGaschargeddroplets++++–++–++–++++++++++++++IonSource(atmosphere)IonSprayinletIonsToQ01TOR-3VacuumInterfaceTurboGasTurboIonSpraySource:ISVoltagTurboIonSpray-IonEvaporationRayleighLimit=10cm2/VTurboIonSpray-IonEvaporatioTurboIonSpray(cont.)TurboIonSpray(cont.)TurboIonSpray(cont)OptimalConditionsTIS:Curtaingas(CG)SETASHIGHASPOSSIBLE(Min.=8)Caninc.CGforlowMWwithoutsensitivityloss.Highersprayerpressuremayrequirehighercur.gasSprayerAlignmentDONOTSPRAYDOWNORIFICE!GenerallynotcompounddependentSprayfurtherawayfromorificeforhigherflowrate.TurboIonSpray(cont)OptimalCoTurboIonSpray(cont)Needlevoltage(+)ion;1500to6000VDC(-)ionwithairasneb;-3000to-4500VDCOxygenreducescoronaeffectinNeg.Mode(-)ionwithN2asneb;-2000to-3500VDNebulizerFlowHigherliq.flowratemayrequirehigherneb.flowFlowrateandsolventcompositionBestsensitivityatlowerflowrate(2-400µL/min.)Canoperateatupto100%water,butbettersensitivitywithsomeorganiccontentTurboIonSpray(cont)NeedlevolTurboIonSpray(cont)ModifiersOrganicacids(e.g.formic,acetic)promoteionizationofbasiccompounds(sp3N-containing)AdductFormation-Neutralcompoundscontainingnucleophiliclonepairs(sp2N,sp3O)canbeionizedbycationizationwithalkalimetalorammoniumions.RecommendedBuffers-Ammoniumformateoracetateareat(2-10mMoptimum,canseesuppressioneffectsover20mM),.1%FormicAcid,(.1%TFAOK)TurboIonSpray(cont)ModifiersTurboIonSpray(cont)CompoundsThatCauseSensitivitySuppressionSaltscaninterferewithionizationandcanclustertocomplicatespectrum(butalsoaidinidentification)StrongbasesorquaternaryaminescaninterferewithpositivemodeanalytesAcids-SulfuricandTFAinterfereinnegativemodeexperiments.DONOTUSEPHOSPHATEBUFFERSNon-CovalentDimmersinIonSprayDimmerSignal=(MW*2)+1onecauseofnon-linearityathighconcentrationsTurboIonSpray(cont)CompoundsHeatedNebulizer(cont.)1stpictureinsideofAPCI/HN,withcoronaneedleoffsetbetweenorificeandquartztube2ndpicturebackofAPCI/HNgungas1andauxconnections,heatercontrolandheaterpowerconnection,backlatteradjustment.HeatedNebulizer(cont.)1stpiHeatedNebulizer(cont.)Apositionsettingof2-4onthehousingunitisusuallysufficienttoavoidsprayingdowntheorifice.HeatedNebulizer(cont.)AposiHeatedNebulizerInletAPCIFactors:APCIisahighflow(0.2-2.0mL/min.)inletSuitableforpolar,thermallystablecmpdsUsually,MW<1300amuProbeisheatedtofacilitatevaporizationRequiresnebulizingandauxiliarygasRequirescoronadischargeneedletoproduceionization(APCI)HeatedNebulizerInletAPCIFacAtmosphericPressureChemicalIonization(APCI)APCIutilizescoronadischarge

APCIisa“three”stepprocess:1)Needleathighvoltageionizesnebulizinggas(airornitrogen)formingprimaryions2)Primaryionsreactimmediatelywithsolventmoleculesformingreagentions3)Reagentionsreact(byprotontransfer)withanalytemoleculesforming(M+H)+inpositiveionmodeor(M-H)-innegativeionmodeAtmosphericPressureChemicalAtmosphericPressureChemicalIonization(APCI)Coronadischargeexample-positiveion1)EIonatmospherecausee-removalfromN2,O2formingN2+•,O2+•2)InacomplexseriesofreactionsN2+•,O2+•reactwithH2O,CH3OHformingH3O+andCH3OH2+asreagentionsforCI.3)H3O+,CH3OH2+donateprotonstoanalyteforming[M+H]+AtmosphericPressureChemicalHeatedNebulizer-APCIAPCIOptimalConditions:ProbeAlignmentDONOTSPRAYDOWNORIFICE!NotcompounddependentOptimizeontuningortestcompoundProbeTemperature

DistillationLimitsactualtemperatureexperiencedbyAnalyte~150DegreesCMinimumtemperaturesetbysolventandflowrate.Maycausethermaldegradationofanalyte.FlowrateandsolventcompositionWorksfrom0.2to2.0mL/min.HeatedNebulizer-APCIAPCIOpHeatedNebulizer-APCIBuffers:Buffers/modifiersnotrequiredforionizationVolatilebufferstoleratedupto50mMVerypolarmodifiersmayreducesensitivitytolesspolaranalyteCoronadischargeneedleposition:Slightlyoff-axistoprobe;alignwithorificeCurtainGas:SETASHIGHASPOSSIBLE(withnosens.loss)Minimumvalueis9(MW<1000)HeatedNebulizer-APCIBuffersVacuumInterface:CurtainGas&DifferentiallyPumpedInterfacesSkimmerdiameteris2.6mm,LargerthenotherinstrumentsforbettersensitivityOrificediameterisunchanged(254µmdiameter)Orifice-ring-skimmerspacingisunchangedOrifice-skimmerpressureis1TorrVacuumInterface:CurtainGas&VacuumInterface:CurtainGas&DifferentiallyPumpedInterfacesVacuumInterface:CurtainGasVacuumSystemSystemcontrollermonitorsvacuumsystem“transparently”Safetyoverridesdisableelectronicsandshutdownturbosif:BAGpressurehigherthan1x10-4torrCGpressurelessthan20psiRotarypumpsareneverdisabledbysystem,theyareturnedon/offmanuallyVacuumSystemSystemcontrollerVacuumInterface:CurtainGas&DifferentiallyPumpedInterfacesCurtainGas(CG)-Ultra-HighPuritynitrogenkeepsnon-ionizedspeciesfrombeingsuckedintovacuumchamberCGaidsiniondeclustering(withCIDpotentials)Twostagetransitionfromatmospheretolowpressureregionofanalyzer(1x10-5torr)Ionsaredrawnindueto:Pressuredifferential(bothions&CG)Electricfieldgradients(ionsonly)VacuumInterface:CurtainGasAnalyzer-Q0RegionAtmos.tovac.flowisafree-jetexpansionOR–SKregionis“highpressure”(1torr),CIDfragmentationmayoccurhere(alsoinSK–Q0region,6x10-3torr)IonsarefocusedintoSKbytheRNG,confinedbyQ0,andattractedtowardIQ1NeutralspeciesarepumpedawayQ0uses“collisionalfocusing”ofionsAnalyzer-Q0RegionAtmos.toAPI-3000IonPath6mTorr1TorrVarian550S25BPumpLeybold3611e-5torrBackedbyD10EDP/ORFP/RNGEP/Q0IQ1STRO1IQ2RO2(LINAC)ST3RO3DFCEMDifferentialPumpingZones(Skimmer,QO&MainQ0=firstQuad.Skimmer,IQ#=Inter-Quad.Lens,ST=StubbiesQuad.,RO#=Quad.,RO2LINAC,DF=Deflector,CEMIonenergies

Q1=Q0-RO1,CE=Q0-RO2(CollisionEnergy),Q3=RO2-RO3(eV)TunablePotentials(MassOrCmpd.Dependent)

OR,RNG,RO2,(ST3unlinked)EPfixed(IQ1,STRO1LinkedEP),IQ2Fixed,(ST3,R03linkedRO2)API-3000IonPath6mTorr1TorrAnalyzer-IQ1,ST&RO1IonspassingthroughIQ1arefocusedbystubbies(pre-filter)intoQ1(massfilter)Q1separatesionsbasedonmass/chargeratioStubbieshaveRFvoltageandDC“offset”Typicalvoltagesfor(+)ion:EP/Q0 Fixed @ -10VIQ1 Fixed @ -11VST Fixed @ -15-17VRO1 Fixed @ -10.5-11V(Individualinstrumentsmayvary)CEP&CXP-CollisioncellpotentialCEP=Collisioncellentrances=Q0-IQ2Fixedon3000CXP=Collisioncellexitpotential=RO2-ST3(massdependent)Massdependenton3000Analyzer-IQ1,ST&RO1IonspAPI-3000IonPath(cont)GriddedexitlenshardwiredtoIQ3Stubbies2andIQ2linkedasIQ2IQ3hardwired1voltmoreattractivethanQ2(RO2)API-3000IonPath(cont)GriddAPI-3000MassFilterRailStubbies2and3heldinQ2endcapsStubbies2coupledtoQ1RFandstubbies3coupledtoQ3RFAPI-3000MassFilterRailStubbAPI-3000CollisionCell-LinacQ2Linac(linearaccelerator)eliminatescross-talkandallowsfasterMS/MSscanningwithoutsensitivitylossesQ2rodsaretiltedandseparateDCpotentialsareappliedtoeachpairofrodstocreateanaxialelectricfieldAPI-3000CollisionCell-LinaCollisionalFocusingCollisionalfocusingisapatentedtechnique,ownedbyPE-Sciex,whichimprovesiontransmissioninQ0andQ2.

Highpressure (8mtorr) Lowpressure (<8mtorr)CollisionalFocusingCollisionaPE-Sciex’sLINACTechnologyPE-Sciex’sLINACTechnologyGenerationoftheLINACAxialFieldGradientFieldgradientestablishedbyanglingrods,eachpairhavingadifferentDCpotentialEntranceofcollisioncellExitofcollisioncell+4v+4v+6v+6v+4v+4v+6v+6vfieldoncenterline≈5.75vfieldoncenterline≈4.25v•entranceexit•GenerationoftheLINACAxialIonPathLinac“Off”Injectionofselegilinetodeterminethelevelofcross-talkintheamphetamineMRMtransitionIonPathLinac“Off”InjectionIonPathwithLinacInjectionofselegilinetodeterminethelevelofcross-talkintheamphetamineMRMtransitionwithaLinacQ2IonPathwithLinacInjectionSelegilineresponsewithdifferentMRMdwelltimesSelegilineresponsewithdiffeEffectofdwelltimeonresolutionprecursorionscanmodeEffectofdwelltimeonresolu

Q1fullscanQ3fullscanSelectedionmonitoring(SIM)ProductionscanPrecursorionscanConstantneutrallossscanMultiplereactionmonitoring(MRM)APITripleQuadBasicScanModesQ1fullscanAPITripleQuadBSingleMSOperationQ1FullScan(Start–Stop)Q1alwaysusedassingleMSanalyzerUsedprimarilyforident.ofprecursorionIntheAPI-2000,Q3operatesinRF-onlymodeAPI-2000operatesverysimilartoanAPI-150EXSingleMSOperationQ1FullScaSingleMSOperation(cont.)MultipleMasses/CenterWidthMode

MultiplesmallscanrangesofthesamewidthResolutiontuneandcalibratemassaxis(withPPG’s)orestablishexactmassofmolecularion/fragmentsQ3ScanusedonlytocalibrateQ3mass(canalsocalibrateQ3inMS/MSmode):CADgasison(=1)toslowionsdownQ1operatesinRF-onlymodeSingleMSOperation(cont.)MulSingleMSOperation(cont.)SIM-SelectedIonMonitoring(Width~0):UsedtooptimizeanalyzerforspecificionsSIMusedforquantitativeanalysesQ1SIMusedto“optimize”precursorionMaximizesignalinpreparationforMS/MSSingleMSOperation(cont.)SIMQ1MSScansQ1FullScan(Start–Stop)Q1alwaysusedassingleMSanalyzerUsedprimarilyforident.ofprecursorionQ3operatesinRF-onlymodeSIM-SelectedIonMonitoring(ormultipleions):UsedtooptimizeanalyzerforspecificionsforMS/MSSIMusedforquantitativeanalysesQ1MSScansQ1FullScan(StartQ3FullScan(Start–Stop)Q3alwaysusedassingleMSanalyzerUsedprimarilyforident.ofprecursorionorforIDAuseQ1operatesinRF-onlymodeQ3MSScansSIM-SelectedIonMonitoring(ormultipleions):UsedtooptimizeanalyzerforspecificionsforMS/MSSIMusedforquantitativeanalysesQ3FullScan(Start–Stop)Q3FragmentationWhenanIonfragmentsthefollowingformulasapply:Positivemode(Parent)+

A++BNeutralNegativemode(Parent)-

A-+BNeutralTwocommontypesmodesoffragmentation:CAD=CollisionallyActivatedDissociationincollisioncell,gasmoleculescollideandcauseweakbondstobreak.CID=CollisionallyInducedDissociationincurtaingasregion,OR/DP&EP/Q0,non-selectiveFragmentationWhenanIonfragMS/MS-ProductIonScanProductionscan-commonMS/MSmodeAfteridentification,theprecursorionissentintothecollisioncellandfragmentedbyCIDQ1isfixed,Q3sweepsagivenmassrangeUsedforstructuralinformationgatheringandidentificationofproductionsFirststeptodevelopingquantitativemethodMS/MS-ProductIonScanProduMS/MS-ProductIonScan(cont.)ProductIonScanm1+m2+m2+m2+Productionspectrumofaparticularcompoundm1+setm2+scanMS/MS-ProductIonScan(contm1+fixedm3+scannedMS/MSProductIonScanAfteridentification,theprecursorionissentintothecollisioncellandfragmentedbyCIDQ1isfixed,Q3sweepsagivenmassrangeUsedforstructuralelucidationFirststeptodevelopingquantitativemethodm1+fixedm3+scannedMS/MSProEphedrine,MW=165(M+H)+166ExampleofProductIonSpectrumEphedrine,MW=165(M+H)+ExampMS/MS-PrecursorIonScanPrecursorionscanQ1sweepsagivenmassrange,Q3isfixedUsedtodeterminethe“origin”ofparticularproduction(s)createdinthecollisioncellFrequentlyusedfordrugmetaboliteidentification(commonproductionobservedinthemetabolites)MS/MS-PrecursorIonScanPrecMS/MS-PrecursorIonScan(cont.)PrecursorIonScanm1+m2+m1+m1+Asetofcompoundswithacommonproductionm1+scanm2+setMS/MS-PrecursorIonScan(com3+fixedm1+scannedQ1sweepsagivenmassrange,Q3isfixedUsedtodeterminethe“origin”ofparticularproduction(s)createdinthecollisioncellFrequentlyusedfordrugmetaboliteidentification(commonproductionobservedinthemetabolites)MS/MSPrecursorIonScanm3+fixedm1+scannedQ1sweeps600900120015001800m/z,amu587.5745.6895.6802.4633.4520.31105.01704.4600900120015001800m/z,amu3.0e66.0e69.0e61.2e7Intensity,cps608.3520.3802.4600900120015001800m/z,amu3.0e46.0e49.0e4Intensity,cpsPrecursorsof86(Ile/Leu)Q1Scan745.6ExampleofPrecursorIonSpectrumAnalysisofpeptidesthathaveLucineorisolucine600900120015001800m/z,amu587.MS/MSConstantNeutralLossNeutrallossscanQ1&Q3bothscanagivenmassrangebutwithaconstantdifferencebetweenrangesscannedSpectrumindicateswhichionsloseaneutralspeciesequaltoQ1-Q3differenceComplementtoPrecursorIonScanNeutral“gain”indicatesamultiplychargedprecursorionwasfragmentedMS/MSConstantNeutralLossNeuMS/MSConstantNeutralLoss(cont.)ConstantNeutralLossScanm1+m2+m2+m1+Asetofcompoundswithacommonneutralfragmentm1+scanm2+scanm-m-mMS/MSConstantNeutralLoss(cm1+scannedm3+scannedΔmQ1&Q3bothscanagivenmassrangebutwithaconstantdifferencebetweenrangesscannedSpectrumindicateswhichionsloseaneutralspeciesequaltoQ1-Q3differenceComplementtoPrecursorIonScanNeutral“gain”indicatesamultiplychargedprecursorionwasfragmentedMS/MSConstantNeutralLossScanm1+scannedm3+scannedΔmQ1&24681012141618Time,min010002000300040005000600070008000Intensity,cps1-Hydroxy-BuspironeGlucuronide2-BuspironeGlucuronide21ConstantNLScan-PhaseIIMetabolitesRet.Time6.6minNL176MS/MSBuspironeGlucuronideEPIof578NNNNNOOGluc-OBuspironeGlucuronideMS3of578402NNNNNOO138265222HO24681012141618Time,min0100020MS/MS-MultiplereactionMonitoring(MRM)IfQ1andQ3width=0,thenMRMManyprecursortoproductionpairscanbemonitored(A-B,A’-B’,A”-B”,etc.)MRManalysisisthebestwaytomaximizesignalintensityofproductionsMRMusedprimarilyforquantitationstudiesMS/MS-MultiplereactionMoniMS/MS-MultipleReactionMonitoring(MRM)(cont.)PrecursorionsetProductionsetFragmentation(CAD)MS/MS-MultipleReactionMoniPrecursorionfixedProductionfixedFragmentation(CAD)Manyprecursortoproductionpairscanbemonitored(A-B,A’-B’,etc.)MRMisthebestwaytomaximizesignalintensityofproductionsMRMusedprimarilyforquantitationMS/MSMultipleReactionMonitoring(MRM)PrecursorionProductionFragHighThroughputMRM:LC/MS/MSBioAnalysisofMultipleDrugs

atenolol,pindolol,acebutololamoxicillin,dicloxicillin,ampicillinHighThroughputMRM:atenololSelectivity:LC/MSvs.LC/MS/MS

Cruderacehorseurineextractdexamethazone(21hrpostdose)2nginsampleinjectedbothcases1.02.03.04.001020304050607080901001.02.03.04.05.06.00102030405060708090100IonselectionToDetectorPrecursorionselectionProductionselectionFragmentation(CAD)ToDetectorSelectivity:LC/MSvs.LC/MS/MWhyLC/MS/MSforQuantitation?SelectbyMWSelectbyStructureIncreasedSensitivity&SpecificityRetentionTime

SeparateonHPLCRetentionTimeIntensitye.g.howmuchcocaineisinurine?WhyLC/MS/MSforQuantitationAPI-3000Analyzer-Q3OperationInallMS/MSmodes,Q3isamassfilterIonsareseparatedbasedonmass/chargeratioQ2is“source”ofproductionsenteringQ3InsingleMSscans,Q3isRF-onlymodeQ3transmitsallionstowarddetectorregionQ3actsas“ionguide”forproductionsAPI-3000Analyzer-Q3OperatioGasControllersNebulizer(Gas1)operatingpre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论