2022-2023学年广东省揭阳市名校九年级数学第一学期期末达标检测模拟试题含解析_第1页
2022-2023学年广东省揭阳市名校九年级数学第一学期期末达标检测模拟试题含解析_第2页
2022-2023学年广东省揭阳市名校九年级数学第一学期期末达标检测模拟试题含解析_第3页
2022-2023学年广东省揭阳市名校九年级数学第一学期期末达标检测模拟试题含解析_第4页
2022-2023学年广东省揭阳市名校九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是()A.10πm B.20πm C.10πm D.60m2.边长等于6的正六边形的半径等于()A.6 B. C.3 D.3.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25° B.40° C.45° D.50°4.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣55.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于()A. B. C. D.6.在平面直角坐标系中,点P(﹣2,7)关于原点的对称点P'在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如果,那么的值为()A. B. C. D.8.如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.99.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是()A.k≥ B.k> C.k<﹣ D.k<10.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为()A.26寸 B.25寸 C.13寸 D.寸二、填空题(每小题3分,共24分)11.写出一个二次函数关系式,使其图象开口向上_______.12.在△ABC中,∠ABC=30°,AB=,AC=1,则∠ACB的度数为____________.13.将抛物线y=2x2的图象向上平移1个单位长度后,所得抛物线的解析式为_____.14.如图,AB是⊙C的直径,点C、D在⊙C上,若∠ACD=33°,则∠BOD=_____.15.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.16.菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=_____cm.17.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.18.请写出一个位于第一、三象限的反比例函数表达式,y=.三、解答题(共66分)19.(10分)如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).20.(6分)某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:电动车,:公交车,:家庭汽车,:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民,其中“:公交车”选项的有人;扇形统计图中,项对应的扇形圆心角是度;(2)若甲、乙两人上班时从、、、四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.21.(6分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.22.(8分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.23.(8分)用配方法解方程:x2﹣8x+1=024.(8分)如图,点E在的中线BD上,.(1)求证:;(2)求证:.25.(10分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.26.(10分)如图是一根钢管的直观图,画出它的三视图.

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OA,OB,OC,根据切线的性质得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等边三角形,得到OA=AB=60,根据弧长的计算公式即可得到结论.【详解】解:连接OA,OB,OC,∵AC与BC是⊙O的切线,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=60,∴公路AB的长度==20πm,故选:B.【点睛】本题主要考察切线的性质及弧长,解题关键是连接OA,OB,OC推出△AOB是等边三角形.2、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A.【点睛】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形.3、B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.4、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.5、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【详解】根据题意:在Rt△ABC中,,则,在Rt△ACD中,,则,∴.故选:D.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.6、D【分析】平面直角坐标系中任意一点,关于原点对称的点的坐标是,即关于原点对称的点的横纵坐标都互为相反数,这样就可以确定其对称点所在的象限.【详解】∵点关于原点的对称点的坐标是,∴点关于原点的对称点在第四象限.故选:D.【点睛】本题比较容易,考查平面直角坐标系中关于原点对称的两点的坐标之间的关系,是需要识记的内容.7、C【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.【详解】解:∵2x=3y,∴=.故选C.【点睛】本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.8、B【分析】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【详解】延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=1.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.9、D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【详解】∵x1<0<x2,y1<y2,∴反比例函数图象分布在第一、三象限,∴1﹣3k>0,∴k<.故选:D.【点睛】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k的取值范围.10、A【分析】取圆心O,连接OP,过O作OH⊥PQ于H,根据垂径定理求出PH的长,再根据勾股定理求出OP的值,即可求出直径.【详解】解:取圆心O,连接OP,过O作OH⊥PQ于H,由题意可知MH=1寸,PQ=10寸,

∴PH=5寸,

在Rt△OPH中,OP2=OH2+PH2,设半径为x,

则x2=(x-1)2+52,

解得:x=13,

故圆的直径为26寸,

故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】抛物线开口向上,则二次函数解析式的二次项系数为正数,据此写二次函数解析式即可.【详解】∵图象开口向上,∴二次项系数大于零,∴可以是:(答案不唯一).故答案为:.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.12、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的长,解直角三角形求出∠ACD,即可求出答案.【详解】如图,作AD⊥BC于D,如图1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如图2,同理可得∠ACD=60°,∴∠ACB=120°.故答案为60°或120°.【点睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解.13、y=2x2+1.【分析】根据左加右减,上加下减的规律,直接得出答案即可.【详解】解:∵抛物线y=2x2的图象向上平移1个单位,∴平移后的抛物线的解析式为y=2x2+1.故答案为:y=2x2+1.【点睛】考查二次函数的平移问题;用到的知识点为:上下平移只改变点的纵坐标,上加下减.14、114°.【分析】利用圆周角定理求出∠AOD即可解决问题.【详解】∵∠AOD=2∠ACD,∠ACD=33°,∴∠AOD=66°,∴∠BOD=180°﹣66°=114°,故答案为114°.【点睛】本题考查圆周角定理,解题的关键是掌握圆周角定理.15、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.16、1【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【详解】解:如图,∵菱形ABCD的周长是20cm,对角线AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案为:1.【点睛】本题考查了菱形的性质,属于简单题,熟悉菱形对角线互相垂直且平分是解题关键.17、【分析】由图象,推得AD=7,DC+BC=6,经过解直角三角形求得BC、DC及BD.再由勾股定理求AB.【详解】过点B作BD⊥AC于点D由图象可知,BM最小时,点M到达D点.则AD=7点M从点D到B路程为13-7=6在△DBC中,∠C=60°∴CD=2,BC=4则BD=2∴AB=故答案为:【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键.18、(答案不唯一).【详解】设反比例函数解析式为,∵图象位于第一、三象限,∴k>0,∴可写解析式为(答案不唯一).考点:1.开放型;2.反比例函数的性质.三、解答题(共66分)19、见解析【分析】连接AA′,作AA′的垂直平分线得到它的中点O,则点O为对称中心,延长BO到B′,使OB′=OB,延长CO到C′,使OC′=OC,则△A′B′C′满足条件.【详解】如图,点O和△A′B′C′为所作.【点睛】本题考查了根据旋转变化作图的知识,根据作线段的垂直平分线找到对称中心是解决问题的关键.20、(1)、800、;(2)【分析】(1)由选项D的人数及其所占的百分比可得调查的人数,总调查人数减去A、B、D、E选项的人数即为C选项的人数,求出B选项占总调查人数的百分比再乘以360度即为项对应的扇形圆心角度数;(2)用列表法列出所有可能出现的情况,再根据概率公式求解即可.【详解】解:(1)本次调查的总人数为人;选项的人数为人;扇形统计图中,项对应的扇形圆心角是;(2)列表如下:由表可知共有种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有种,所以甲、乙两人恰好选择同一种交通工具上班的概率为.【点睛】本题考查了样本估计总体及列表法或树状图法求概率,是数据与概率的综合题,灵活的将条形统计图与扇形统计图中的数据相关联是解(1)的关键,熟练的用列表或树状图列出所有可能情况是求概率的关键.21、(1)30°;(2)海监船继续向正东方向航行是安全的.【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形22、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论