2023届重庆八中学九年级数学第一学期期末调研模拟试题含解析_第1页
2023届重庆八中学九年级数学第一学期期末调研模拟试题含解析_第2页
2023届重庆八中学九年级数学第一学期期末调研模拟试题含解析_第3页
2023届重庆八中学九年级数学第一学期期末调研模拟试题含解析_第4页
2023届重庆八中学九年级数学第一学期期末调研模拟试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米 B.2分米 C.3分米 D.3分米2.若反比例函数的图像在第二、四象限,则它的解析式可能是()A. B. C. D.3.抛物线的部分图象如图所示,当时,x的取值范围是()A.x>2或x<-3 B.-3<x<2C.x>2或x<-4 D.-4<x<24.如图,为的直径,弦于点,,,则的半径为()A.5 B.8 C.3 D.105.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.26.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或17.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或8.如图,⊙O的半径为5,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A. B. C. D.9.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A.2cm B.4cm C.6cm D.8cm10.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×2二、填空题(每小题3分,共24分)11.若,分别是一元二次方程的两个实数根,则__________.12.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.13.方程2x2-x=0的根是______.14.如图,路灯距离地面,身高的小明站在距离路灯底部(点)的点处,则小明在路灯下的影子长为_____.15.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.16.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球_____只.17.已知线段,点是它的黄金分割点,,设以为边的正方形的面积为,以为邻边的矩形的面积为,则与的关系是__________.18.计算sin60°cos60°的值为_____.三、解答题(共66分)19.(10分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?20.(6分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).21.(6分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围:_______;(2)当时,求的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.22.(8分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?23.(8分)化简:.24.(8分)东方市在铁路礼堂举办大型扶贫消费市场,张老师购买5斤芒果和2斤哈密瓜共花费64元;李老师购买3斤芒果和1斤哈密瓜共花费36元.求一斤芒果和一斤哈密瓜的售价各是多少元?25.(10分)如图,在中,,是的平分线,是上一点,以为半径的经过点.(1)求证:是切线;(2)若,,求的长.26.(10分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OC,作OE⊥CD,根据垂径定理和勾股定理求解即可.【详解】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故选:B.【点睛】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.2、A【分析】根据反比例函数的定义及图象经过第二、四象限时,判断即可.【详解】解:、对于函数,是反比例函数,其,图象位于第二、四象限;、对于函数,是正比例函数,不是反比例函数;、对于函数,是反比例函数,图象位于一、三象限;、对于函数,是二次函数,不是反比例函数;故选:A.【点睛】本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.3、C【分析】先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y<0时,x的取值范围.【详解】解:因为抛物线过点(2,0),对称轴是x=-1,

根据抛物线的对称性可知,抛物线必过另一点(-1,0),

因为抛物线开口向下,y<0时,图象在x轴的下方,

此时,x>2或x<-1.

故选:C.【点睛】本题考查了抛物线与x轴的交点,解题的关键是利用二次函数的对称性,判断图象与x轴的交点,根据开口方向,形数结合,得出结论.4、A【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r,则OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.5、C【解析】分析:根据直角三角形的性质得出AE=CE=1,进而得出DE=3,利用勾股定理解答即可.详解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,∴AE=CE=1,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选C.点睛:此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.6、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.7、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【点睛】本题考查反比例函数的图像和性质.8、C【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【详解】过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半径为5,∴BD=OB•cos∠OBC=,∴BC=5,故选C.【点睛】本题考查了垂径定理、圆周角定理、解直角三角形等,添加辅助线构造直角三角形进行解题是关键.9、B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O的半径为4cm,点P在⊙O上,∴OP=4cm.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.10、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.二、填空题(每小题3分,共24分)11、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,∴故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题12、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.13、x1=,x2=0【分析】利用因式分解法解方程即可.【详解】2x2-x=0,x(2x-1)=0,x=0或2x-1=0,∴x1=,x2=0.故答案为x1=,x2=0.【点睛】本题考查了一元二次方程的解法-因式分解法,熟练运用因式分解法将方程化为x(2x-1)=0是解决问题的关键.14、4【分析】,从而求得.【详解】解:,解得.【点睛】本题主要考查的相似三角形的应用.15、1【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd-ab=1,即可得出答案.【详解】设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴,∴cd-ab=1,∴k2-k1=1,故答案为:1.【点睛】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键.16、1.【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=1,经检验,x=1是原方程的解,所以袋中共有小球1只.故答案为1.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.17、【分析】根据黄金分割比得出AP,PB的长度,计算出与即可比较大小.【详解】解:∵点是AB的黄金分割点,,∴,设AB=2,则,∴∴故答案为:.【点睛】本题考查了黄金分割比的应用,熟知黄金分割比是解题的关键.18、【分析】直接利用特殊角的三角函数值代入求出答案.【详解】原式=×.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共66分)19、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.20、感知:(1)详见解析;(1)m1;拓展:m1,理由详见解析;应用:16,m1.【解析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.【详解】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案为m1,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BCD=BC•DM=×8×2=16,若BC=m,则BN=DM=BC=m,∴S△BCD=BC•DM=×m×m=m1故答案为16,m1.【点睛】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.21、(1);(2),;(3)经过点的双曲线的值不变.值为.【分析】(1)过点P作PE⊥BC于点E,依题意求得P、Q的坐标,进而求得PE、EQ的长,再利用勾股定理即可求得答案,由时间=距离速度可求得t的取值范围;(2)当,即时,代入(1)求得的函数中,解方程即可求得答案;(3)过点作于点,求得OB的长,由,可求得,继而求得OD的长,利用三角函数即可求得点D的坐标,利用反比例函数图象上点的特征即可求得值.【详解】(1)过点P作PE⊥BC于点E,如图1:∵点B、C纵坐标相同,∴BC⊥y轴,∴四边形OPEC为矩形,∵运动的时间为秒,∴,在中,,,,∴,即,点Q运动的时间最多为:(秒),点P运动的时间最多为:(秒),∴关于的函数解析式及的取值范围为:;(2)当时,整理,得,解得:,.(3)经过点的双曲线的值不变.连接,交于点,过点作于点,如下图2所示.∵,,∴.∵,∴,∴,∴.∵,∴.在中,,,∴,,∴点的坐标为,∴经过点的双曲线的值为.【点睛】本题考查了二次函数的应用-动态几何问题,解直角三角形的应用,相似三角形的判定与性质,构造正确的辅助线是解题的关键.22、乙方案能使2020年氮肥的产量更高,高20吨【分析】设甲方案的平均增长率为,根据题意列出方程,求出x的值,即可求出甲方案2020年产量,再根据题意求出乙方案2020年产量,比较即可得出结论.【详解】解:设甲方案的平均增长率为,依题意得.解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论