版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小结与复习第二十七章小结与复习(1)形状相同的图形(2)相似多边形要点梳理(3)相似比:相似多边形对应边的比1.
图形的相似①表象:大小不等,形状相同.②实质:各对应角相等、各对应边成比例.第二十七章小结与复习通过定义平行于三角形一边的直线三边成比例两边成比例且夹角相等两角分别相等两直角三角形的斜边和一条直角边成比例(三个角分别相等,三条边成比例)2.
相似三角形的判定第二十七章小结与复习对应角相等、对应边成比例对应高、中线、角平分线的比等于相似比周长比等于相似比面积比等于相似比的平方3.
相似三角形的性质第二十七章小结与复习(1)测高测量不能到达两点间的距离,常构造相似三角形求解.(不能直接使用皮尺或刻度尺量的)(不能直接测量的两点间的距离)测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决.(2)测距4.
相似三角形的应用第二十七章小结与复习(1)如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.(这时的相似比也称为位似比)5.
位似(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比;对应线段平行或者在一条直线上.第二十七章小结与复习(3)
位似性质的应用:能将一个图形放大或缩小.ABGCEDF●PB′A′C′D′E′F′G′A′B′C′D′E′F′G′ABGCEDF●P第二十七章小结与复习(4)平面直角坐标系中的位似当位似图形在原点同侧时,其对应顶点的坐标的比为k;当位似图形在原点两侧时,对应顶点的坐标的比为-k.第二十七章小结与复习考点讲练例1
如图,当满足下列条件之一时,都可判定
△ADC∽△ACB.(1)
;(2)
;(3)
.∠ACD=∠B∠ACB=∠ADCBCAD或AC2=AD·AB一相似三角形的判定和性质第二十七章小结与复习例2
如图,△ABC中,AB=9,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=
.BCAE【分析】从题干分析△AEF与△ABC相似,此时对应关系不明确,需分类讨论第二十七章小结与复习例2
如图,△ABC中,AB=9,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=
.BCAE2或4.5解析:当△AEF∽△ABC时,AE:AB=AF:AC,即3:9=AF:6,解得AF=2;当△AFE∽△ABC时,AF:AB=AE:AC,即AF:9=3:6,解得AF=4.5;综上所述AF=2或4.5.第二十七章小结与复习例3
如图,在□ABCD中,点E在边BC上,BE:
EC=1:2,连接AE交BD于点F,则△BFE的面积与△DFA的面积之比为
.
1:9ABCDEF第二十七章小结与复习例4
如图,在□ABCD中,点E在边BC上,EF
:AF
=1:3,连接AE交BD于点F,则△EFB的面积与△ABD
的面积之比为
.
1:12ABCDEF【注意】求面积比时,要注意相似三角形、等高三角形的区别解析:∵AD∥BC,∴△EFB∽△AFD,相似比为1:3,∴S△EFB:S△AFD=1:9,∵△EFB与△ABF同高,∴S△EFB:S△ABF=1:3,∴S△EFB:S△ABD=1:12.第二十七章小结与复习证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°.∵CE是外角平分线,∴∠ACE=60°,∴∠BAC=∠ACE.又∵∠ADB=∠CDE,∴△ABD∽△CED.例5
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.(1)求证:△ABD∽△CED;ABCDFE第二十七章小结与复习(2)若AB=6,AD=2CD,求BE的长.解:作BM⊥AC于点M.
∵
AC=AB=6,∴AM=CM=3.∵AD=2CD,∴CD=2,AD=4,
MD=1.ABCDFEM第二十七章小结与复习即∴ABCDFEM在Rt△BDM中,由(1)△ABD∽△CED得,第二十七章小结与复习例6
如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,求证:PC2=PA·PB.B·ACDOP证明:连接AC,BC.∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°.又∵CD⊥AB,∴∠CPB=90°,∠PCB+∠B=90°.∴∠A=∠CPB,∴△APC∽△CPB.∴
PC2=AP·PB.∴第二十七章小结与复习二位似的性质及应用例7
下列四个图形中,位似图形的有()A.1个B.2个
C.3个
D.4个C第二十七章小结与复习例8
如图,下面的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.ABC(1)在图中△ABC内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为2:3.OA′B′C′解:如图所示.(2)线段AA′的长度是
.第二十七章小结与复习例9
如图,某一时刻小树AB的影子顶端与大树CD的刚好重合.已知小树AB高2.4米,大树CD高5米,而大树的影长为2.5米,求小树与大树之间的距离BD.解:由题知△ABE∽△CDE,∴AB:CD=BE:DE,即2.4:5=BE:2.5,解得BE=1.2,∴BD=2.5-1.2=1.3(米).三相似的应用第二十七章小结与复习例10
星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,结合光的反射原理,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.第二十七章小结与复习解:如图,线段AB为纪念碑,在地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、
BE的长,就可算出纪念碑AB的高.根据,即可算出AB的高.你还有其他方法吗?理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.第二十七章小结与复习例11
如图,△ABC是一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?ABCDEFGH解:设正方形EFHG为加工成的正方形零件,边GH在BC
上,顶点E、F分别在AB、
AC上,△ABC的高AD与边
EF相交于点M,设正方形的边长为xmm.M第二十七章小结与复习∵EF//
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋代持业务合同范本3篇
- 二零二五版电机维修智能化改造合同范本3篇
- 二零二五年度房地产经纪服务合同7篇
- 二零二五版购房借款及房地产开发商风险控制担保服务合同3篇
- 二零二五版商业地产买卖合同模板下载3篇
- 二零二五年度高等教育机构外国专家项目合作合同参考书3篇
- 二零二五版家用空调安装与室内环境改善合同3篇
- 二零二五年度成都上灶师父招聘与餐饮业人才服务合同2篇
- 展会创意展示合同(2篇)
- 2025年度油气田2#配电房土建安装与防爆电气设备合同3篇
- 下肢皮牵引护理PPT课件(19页PPT)
- 台资企业A股上市相关资料
- 电 梯 工 程 预 算 书
- 参会嘉宾签到表
- 机械车间员工绩效考核表
- 形式发票格式2 INVOICE
- 2.48低危胸痛患者后继治疗评估流程图
- 人力资源管理之绩效考核 一、什么是绩效 所谓绩效简单的讲就是对
- 山东省医院目录
- 云南地方本科高校部分基础研究
- 废品管理流程图
评论
0/150
提交评论