版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市吉化第九中学2023学年中考测试卷猜想数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A.6 B. C. D.32.一次函数与反比例函数在同一个坐标系中的图象可能是()A. B. C. D.3.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y14.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.5.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,37.下列计算正确的是()A. B. C. D.8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.9.计算-4-|-3|的结果是()A.-1B.-5C.1D.510.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣711.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105 B.0.83×106 C.8.3×106 D.8.3×10712.如图是测量一物体体积的过程:步骤一:将180mL的水装进一个容量为300mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.14.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.15.已知(x-ay)(x+ay),那么a=_______16.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.17.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.18.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).20.(6分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)21.(6分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.22.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23.(8分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.24.(10分)解分式方程:25.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.26.(12分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.27.(12分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【答案解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【答案点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.2、B【答案解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.故选B.3、D【答案解析】测试卷分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.4、A【答案解析】测试卷分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形5、A【答案解析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.6、A【答案解析】测试卷分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.7、A【答案解析】
原式各项计算得到结果,即可做出判断.【题目详解】A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.【答案点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8、B【答案解析】测试卷解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.9、B【答案解析】
原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【题目详解】原式=-2-3=-5,故选:B.【答案点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10、B【答案解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.11、C【答案解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10|)的记数法.【题目详解】830万=8300000=8.3×106.故选C【答案点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.12、C【答案解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、14【答案解析】
取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.【题目详解】解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.∵I是AE的中点,∴S△IAB=12S则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.
故答案为14.【答案点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.14、1【答案解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.【题目详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1.15、±4【答案解析】
根据平方差公式展开左边即可得出答案.【题目详解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案为:±4.【答案点睛】本题考查的平方差公式:.16、(24001,0)【答案解析】分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标详解:∵直线l:∴∵NM⊥x轴,M1N⊥直线l,∴∴同理,…,所以,点的坐标为点M2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.17、1【答案解析】
设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【题目详解】解:设正多边形的边数为n,由题意得,=144°,解得n=1.故答案为1.【答案点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.18、cm【答案解析】
利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.【题目详解】∵半径为1cm的圆形,∴底面圆的半径为:1cm,周长为2πcm,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故答案为cm.【答案点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().【答案解析】测试卷分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.测试卷解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:,解得:,∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合题意,舍去)∴N点的坐标为(﹣,).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为().将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或().【答案点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.20、通信塔CD的高度约为15.9cm.【答案解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【题目详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【答案点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.21、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【答案解析】
(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【题目详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6)其中0<t<6,则N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴当t=3时,△PAB的面积有最大值;(3)△PDE为等腰直角三角形,
则PE=PD,
点P(m,-m2+2m+6),
函数的对称轴为:x=2,则点E的横坐标为:4-m,
则PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故点P的坐标为:(4,6)或(5-,3-5).【答案点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.22、(1);(2)【答案解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【答案解析】
利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【题目详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【答案点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.24、无解【答案解析】
首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【题目详解】解:两边同乘以(x+2)(x-2)得:x(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿化工程承包合同
- 大班种子课件教学课件
- 2024山西劳动合同范本
- 2024年度J企业卫星通信技术服务合同
- 2024年店面续租协议:市中心
- 2024互联网销售涂料产品独家代理合同
- 2024年工程进度与安全合同
- 2024年建筑修正协议
- 2024年家用电器维修服务合同
- 2024双方关于影视制作与发行委托合同
- 高考物理系统性复习 (能力提高练) 第五节 实验:探究小车速度随时间变化的规律(附解析)
- 眼科护理中的孕妇与产妇护理
- 业主业主委员会通用课件
- 了解金融市场和金融产品
- 南京理工大学2015年613物理化学(含答案)考研真题
- 初中数学应用题解题思路分享
- 安全生产科技创新与应用
- 人工智能在文化传承与遗产保护中的价值实现
- 2024年汽修厂开业计划书
- ISTA标准-2A、2B、2C系列解读(图文)
- 日间手术应急预案方案
评论
0/150
提交评论