版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是()A.①③ B.②④ C.①②④ D.②③④2.已知反比例函数的图象在二、四象限,则的取值范围是()A. B. C. D.3.已知P是△ABC的重心,且PE∥BC交AB于点E,BC=,则PE的长为().A. B. C. D.4.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A. B. C. D.6.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在7.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:98.如果一个正多边形的内角和等于720°,那么这个正多边形的每一个外角等于()A.45° B.60° C.120° D.135°9.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.10.已知是关于的一元二次方程的解,则等于()A.1 B.-2 C.-1 D.2二、填空题(每小题3分,共24分)11.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)12.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.13.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______14.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.15.如图,在平面直角坐标系中,函数与的图象交于两点,过作轴的垂线,交函数的图象于点,连接,则的面积为_______.16.如图,为了测量塔的高度,小明在处仰望塔顶,测得仰角为,再往塔的方向前进至处,测得仰角为,那么塔的高度是____________.(小明的身高忽略不计,结果保留根号)17.如图,在中,,是边上的中线,,则的长是__________.18.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.三、解答题(共66分)19.(10分)如图,已知中,以为直径的⊙交于,交于,,求的度数.20.(6分)我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.”其大意是:一矩形田地面积为864平方步,宽比长少12步,问该矩形田地的长和宽各是多少步?请用已学过的知识求出问题的解.21.(6分)如图,在平面直角坐标系中,双曲线l:y=(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.(1)求l的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)22.(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.(8分)如图,在正方形网格上有以及一条线段.请你以为一条边.以正方形网格的格点为顶点画一个,使得与相似,并求出这两个三角形的相似比.24.(8分)如图所示,每个小方格都是边长为1的正方形,以点为坐标原点建立平面直角坐标系四边形的顶点的坐标为,顶点的坐标为,顶点的坐标为,请在图中画出四边形关于原点.对称的四边形.25.(10分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.26.(10分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.
参考答案一、选择题(每小题3分,共30分)1、D【分析】①依据抛物线开口方向可确定a的符号、与y轴交点确定c的符号进而确定ac的符号;②由抛物线与x轴交点的坐标可得出一元二次方程ax2+bx+c=0的根;③由当x=1时y<0,可得出a+b+c<0;④观察函数图象并计算出对称轴的位置,即可得出当x>1时,y随x的增大而增大.【详解】①由图可知:,,,故①错误;②由抛物线与轴的交点的横坐标为与,方程的根是,,故②正确;③由图可知:时,,,故③正确;④由图象可知:对称轴为:,时,随着的增大而增大,故④正确;故选D.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.2、D【分析】由题意根据反比例函数的性质即可确定的符号,进行计算从而求解.【详解】解:因为反比例函数的图象在二、四象限,所以,解得.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数,当k>0时,反比例函数图象在一、三象限;当k<0时,反比例函数图象在第二、四象限内.3、A【分析】如图,连接AP,延长AP交BC于D,根据重心的性质可得点D为BC中点,AP=2PD,由PE//BC可得△AEP∽△ABD,根据相似三角形的性质即可求出PE的长.【详解】如图,连接AP,延长AP交BC于D,∵点P为△ABC的重心,BC=,∴BD=BC=,AP=2PD,∴,∵PE//BC,∴△AEP∽△ABD,∴,∴PE===.故选:A.【点睛】本题考查三角形重心的性质及相似三角形的判定与性质,三角形的重心是三角形三条中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1;正确作出辅助线,构造相似三角形是解题关键.4、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.5、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【详解】∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.故选A.【点睛】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.6、A【解析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.7、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.8、B【分析】先用多边形的内角和公式求这个正多边形的边数为n,再根据多边形外角和等于360°,可求得每个外角度数.【详解】解:设这个正多边形的边数为n,
∵一个正多边形的内角和为720°,
∴180°(n-2)=720°,
解得:n=6,
∴这个正多边形的每一个外角是:360°÷6=60°.
故选:B.【点睛】本题考查了多边形的内角和与外角和的知识.应用方程思想求边数是解题关键.9、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.10、C【分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值.【详解】将x=1代入方程式得1+m+n=0,
解得m+n=-1.
故选:C.【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题.二、填空题(每小题3分,共24分)11、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,
∴四边形ABCD是平行四边形,
∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;
当AC⊥BD时,四边形ABCD是菱形.
故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.12、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上AC的长即可求得树AB的高.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【点睛】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.13、8m【分析】由题意证△ABO∽△CDO,可得,即,解之可得.【详解】如图,
由题意知∠BAO=∠C=90°,
∵∠AOB=∠COD,
∴△ABO∽△CDO,
∴,即,
解得:CD=8,
故答案为:8m.【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.14、【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=2,则tan∠ABC=,故答案为:.【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15、6【分析】根据正比例函数y=kx与反比例函数的图象交点关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,-),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【详解】∵正比例函数y=kx与反比例函数的图象交点关于原点对称,∴设A点坐标为(x,−),则B点坐标为(−x,),C(−2x,−),∴S=×(−2x−x)⋅(−−)=×(−3x)⋅(−)=6.故答案为6.【点睛】此题考查正比例函数的性质与反比例函数的性质,解题关键在于得出A、C两点.16、【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,
∴∠ADB=∠DBC-∠A=30°,
∴∠ADB=∠A=30°,
∴BD=AB=60m,
∴CD=BD•sin60°=60×=30(m).
故答案为:30.【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.17、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.18、【解析】连接AC,与对称轴交于点P,此时DE+DF最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点,在二次函数y=x2+2x﹣3中,当时,当时,或即点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,PB+PC=DE+DF的最小值为:故答案为【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.三、解答题(共66分)19、40°【分析】连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.【详解】解:连接∵是⊙的直径.∴,∴,∵,∴∴∴,∴.【点睛】本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.20、矩形的阔为24步,长为36步.【解析】设阔为x步,则长为(x+12)步,根据面积为864,即可得出方程求解即可.【详解】设阔为x步,则长为(x+12)步,由题意可得:x(x+12)=864,解得:x1=24,x2=﹣36(舍),24+12=36,答:矩形的阔为24步,长为36步.【点睛】本题考查了一元二次方程的应用,为面积问题,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.21、(1);(2);(1)0<m≤1【分析】(1)将B(2,1)代入求出k即可;(2)根据A(a,b)在反比例函数图象上,得到,根据三角形的面积列方程即可得到结论;(1)把(,1)代入y=mx+1得,m=1,再根据一次函数的性质即可得到结论.【详解】解:(1)将B(2,1)代入得:k=2,∴反比例函数l的解析式为;(2)∵A(a,b)在反比例函数的图象上,∴,即,∵S△ABC==2,即=2,解得:b=1,∴点A的坐标为;(1)∵直线l1:y=mx+1过点P,点P为l上一段曲线AB(包括A,B两点)的动点,∴当点P与A重合时,把(,1)代入y=mx+1得,m=1,∵y=mx+1具有y随x增大而增大的特点,∴m>0,∴m的取值范围为:0<m≤1.【点睛】本题考查了反比例函数与几何综合,待定系数法求函数的解析式,三角形的面积计算,一次函数的性质,熟练掌握数形结合思想的应用是解题的关键.22、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;(2)由(1)中的函数解析式,利用二次函数的性质即可得;(3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.23、图见解析,与的相似比是.【分析】可先选定BC与DE为对应边,对应边之比为1:2,据此来选定点F的位置,相似比亦可得.【详解】解:如图,与相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【点睛】此题主要考查了相似三角形的判定与性质,利用网格得出三角形各边长度是解题关键.24、答案见解析.【分析】根据中心对称的性质画出四边形即可.【详解】如解图所示,四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动计划合集九篇
- 三年级下册教学工作计划
- 护士的个人鉴定(7篇)
- 单位培训总结报告
- 初一语文上册教学工作计划
- 母亲节的演讲稿汇编9篇
- 农资业务员年终总结
- 2022天宫课堂第三课观后感500字11篇
- 《习惯的力量》读书笔记
- 团员自我鉴定(集合15篇)
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 信息服务政府采购合同范例
- 2024年心理咨询师考试题库【典型题】
- 送教上门情况记录表多篇
- 新时代大学生劳动教育与实践 课件 第二章 劳动是职业生涯发展的重要支撑
- 贵州省贵阳市实验三中2024年高三第二次联合考试数学试题试卷
- 护士四页简历12模版
- 2024年江西省公务员考试《行测》真题及答案解析
- 《中国心力衰竭诊断和治疗指南2024》解读(下)
- 器官捐献合作协议书范文模板
- 黑龙江省行政职业能力测验真题2023年(联考)
评论
0/150
提交评论