![甘肃省定西市安定区2022-2023学年数学九年级第一学期期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view/89ddbf3a62e4319759a6daf08bbd6660/89ddbf3a62e4319759a6daf08bbd66601.gif)
![甘肃省定西市安定区2022-2023学年数学九年级第一学期期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view/89ddbf3a62e4319759a6daf08bbd6660/89ddbf3a62e4319759a6daf08bbd66602.gif)
![甘肃省定西市安定区2022-2023学年数学九年级第一学期期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view/89ddbf3a62e4319759a6daf08bbd6660/89ddbf3a62e4319759a6daf08bbd66603.gif)
![甘肃省定西市安定区2022-2023学年数学九年级第一学期期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view/89ddbf3a62e4319759a6daf08bbd6660/89ddbf3a62e4319759a6daf08bbd66604.gif)
![甘肃省定西市安定区2022-2023学年数学九年级第一学期期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view/89ddbf3a62e4319759a6daf08bbd6660/89ddbf3a62e4319759a6daf08bbd66605.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8 B.12 C.15 D.162.下列一元二次方程中,没有实数根的是().A. B.C. D.3.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为()A.2 B.2﹣2 C.4﹣2 D.2﹣4.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠25.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.46.正六边形的边心距与半径之比为()A. B. C. D.7.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上8.下列各式正确的是()A. B.C. D.9.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.10.如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是()A. B.C. D.11.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正确的结论有()A.4个 B.3个 C.2个 D.1个12.方程的解是()A.4 B.-4 C.-1 D.4或-1二、填空题(每题4分,共24分)13.如图,在平面直角坐标系xOy中,,,如果抛物线与线段AB有公共点,那么a的取值范围是______.14.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.15.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________16.把二次函数变形为的形式,则__________.17.若,则的值为_____.18.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=_____.三、解答题(共78分)19.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).21.(8分)解下列方程(1);(2).22.(10分)如图,的三个顶点在平面直角坐标系中正方形的格点上.(1)求的值;(2)点在反比例函数的图象上,求的值,画出反比例函数在第一象限内的图象.23.(10分)已知函数,(m,n,k为常数且≠0)(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数,的图像始终经过同一个定点M.①求点M的坐标和k的取值②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.24.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为.(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;(3)___________________.25.(12分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)26.如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:(1)在图1中作出圆心O;(2)在图2中过点B作BF∥AC.
参考答案一、选择题(每题4分,共48分)1、D【分析】由题意b2﹣4c=0,得b2=4c,又抛物线过点A(m,n),B(m﹣8,n),可知A、B关于直线x=对称,所以A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,化简整理即可解决问题.【详解】解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=对称,∴A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,n=(+4)2+b(+4)+c=b2+1+c,∵b2=4c,∴n=1.故选:D.【点睛】本题考查二次函数的性质,关键在于熟悉性质,灵活运用.2、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3、D【分析】根据正切的定义求出AC,根据正弦的定义求出CF,计算即可.【详解】解:在Rt△ABC中,BC=2,∠A=30°,AC==2,则EF=AC=2,∵∠E=45°,∴FC=EF•sinE=,∴AF=AC﹣FC=2﹣,故选:D.【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.4、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【点睛】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.5、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..6、C【分析】我们可设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.【详解】如右图所示,边长AB=2;又该多边形为正六边形,故∠OBA=60°,在Rt△BOG中,BG=1,OG=,所以AB=2,即半径、边心距之比为.故选:C.【点睛】此题主要考查正多边形边长的计算问题,要求学生熟练掌握应用.7、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.8、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.9、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.10、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应角不一定相等,故两三角形不相似,故本选项符合题意;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.11、A【详解】如图,连接CO,DO,∵MC与⊙O相切于点C,∴∠MCO=90°,在△MCO与△MDO中,,∴△MCO≌△MDO(SSS),∴∠MCO=∠MDO=90°,∠CMO=∠DMO,∴MD与⊙O相切,故①正确;在△ACM与△ADM中,,∴△ACM≌△ADM(SAS),∴AC=AD,∴MC=MD=AC=AD,∴四边形ACMD是菱形,故②正确;如图连接BC,∵AC=MC,∴∠CAB=∠CMO,又∵AB为⊙O的直径,∴∠ACB=90°,在△ACB与△MCO中,,∴△ACB≌△MCO(SAS),∴AB=MO,故③正确;∵△ACB≌△MCO,∴BC=OC,∴BC=OC=OB,∴∠COB=60°,∵∠MCO=90°,∴∠CMO=30°,又∵四边形ACMD是菱形,∴∠CMD=60°,∴∠ADM=120°,故④正确;故正确的有4个.故选A.12、D【分析】利用因式分解法解一元二次方程即可.【详解】解:解得:故选D.【点睛】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.二、填空题(每题4分,共24分)13、【解析】分别把A、B点的坐标代入得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把代入得;把代入得,所以a的取值范围为.故答案为.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.14、2或1【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则BP=AB﹣AP=(5﹣x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当AD:PB=PA:BC时,,解得x=2或1.②当AD:BC=PA+PB时,,解得x=1,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或1.故答案为2或1.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.15、1【分析】设出顶点式,根据,设出B(h+3,a),将B点坐标代入,即可求出a值,即可求出直线l与x轴之间的距离,进一步求出答案.【详解】由题意知函数的顶点纵坐标为-3,可设函数顶点式为,因为平行于轴的直线交此抛物线,两点,且,所以可设B(h+3,a).将B(h+3,a)代入,得所以点B到x轴的距离是6,即直线l与x轴的距离是6,又因为D到x轴的距离是3所以点到直线的距离:3+6=1故答案为1.【点睛】本题考查了顶点式的应用,能根据题意设出顶点式是解答此题的关键.16、【分析】利用配方法将二次函数变成顶点式即可.【详解】,∴h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.17、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18、.【分析】根据直角三角形的性质解答即可.【详解】∵旗杆高AB=8m,旗杆影子长BC=16m,∴tanC===,故答案为【点睛】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.三、解答题(共78分)19、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽车从A地到B地比原来少走的路程为[40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20、(1)画图见解析;(2)点B所经过的路径长为.【解析】(1)让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.
(2)旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【详解】(1)如图.(2)由(1)知这段弧所对的圆心角是90°,半径AB==5,∴点B所经过的路径长为.【点睛】本题主要考查了作旋转变换图形,勾股定理,弧长计算公式,熟练掌握旋转的性质和弧长的计算公式是解答本题的关键.21、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【详解】(1),或,所以,;(2),,或,所以,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).22、(1);(2),图见解析【分析】(1)过点B作BD⊥AC于点D,然后在Rt△ABD中可以求出;(2)将点B代入,可得出k的值,从而得出反比例函数解析式,进而用描点法画出函数图象即可.【详解】解:(1)过点B作BD⊥AC于点D,由图可得,BD=2,AD=4,∴.(2)将点B(1,3)代入,得k=3,∴反比例函数解析式为.函数在第一象限内取点,描点得,x(x>0)1236y6322连线得函数图象如图:【点睛】本题主要考查正切值的求法,反比例函数解析式的求法以及反比例函数图象的画法,掌握基本概念和作图步骤是解题的关键.23、(1);(2)①M(2,3),k=3;②【分析】(1)将两点代入解析式即可得出结果;(2)①二次函数过某定点,则函数表达式与字母系数无关,以此解决问题;②根据二次函数的性质解题【详解】解:(1)①若函数图象经过点A(2,5),将A(2,5)代入得,不成立②若函数图象经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深入探讨科技企业如何通过强化知识产权保护来提升品牌形象和竞争力
- 现代绿色办公楼的设计与施工经验分享
- 生产制造中基于智能算法的调度系统设计
- 2023三年级英语上册 Unit 3 My friends第4课时说课稿 牛津译林版
- 2024年春八年级语文下册 第二单元 5 大自然的语言说课稿 新人教版
- 9 乌鸦喝水(说课稿)-2024-2025学年统编版语文一年级上册
- Unit 4 My Family Lesson 2(说课稿)-2023-2024学年人教新起点版英语三年级下册
- Unit 6 Useful numbers Lesson 2(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024-2025学年高中历史 第三单元 各国经济体制的创新和调整 第16课 战后资本主义经济的调整教学说课稿 岳麓版必修2
- 2025淮安市城东花园小区门禁系统工程合同
- 2025年人教五四新版八年级物理上册阶段测试试卷含答案
- 2025新人教版英语七年级下单词表(小学部分)
- 2025年春季1530安全教育记录主题
- 矿山2025年安全工作计划
- 基本药物制度政策培训课件
- 2025年包装印刷项目可行性研究报告
- 2025年九年级物理中考复习计划
- 企业融资报告特斯拉成功案例分享
- 合资经营工厂合同范本
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 2024年《论教育》全文课件
评论
0/150
提交评论