2023届四川省资阳市名校数学九年级第一学期期末学业质量监测试题含解析_第1页
2023届四川省资阳市名校数学九年级第一学期期末学业质量监测试题含解析_第2页
2023届四川省资阳市名校数学九年级第一学期期末学业质量监测试题含解析_第3页
2023届四川省资阳市名校数学九年级第一学期期末学业质量监测试题含解析_第4页
2023届四川省资阳市名校数学九年级第一学期期末学业质量监测试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中可能的是()A. B.C. D.2.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处3.若△ABC∽△DEF,相似比为2:3,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:94.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:45.已知反比例函数的图象经过点,小良说了四句话,其中正确的是()A.当时, B.函数的图象只在第一象限C.随的增大而增大 D.点不在此函数的图象上6.如图,双曲线的一个分支为()A.① B.② C.③ D.④7.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确的有()A.1个 B.2个 C.3个 D.4个8.一元二次方程x2+x+1=0的根的情况是().A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上说法都不对9.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.10.下列电视台的台标,是中心对称图形的是()A. B. C. D.11.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长12.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,在中,,,延长至点,使,则________.14.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.15.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.17.如图,直线,若,则的值为_________18.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.三、解答题(共78分)19.(8分)如图,在中,,.,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点,.(1)求的长.(2)若点是线段的中点,求的值.20.(8分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.21.(8分)解方程:x(x-2)+x-2=1.22.(10分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.以点为位似中心,在轴的左侧将放大得到,使得的面积是面积的倍,在网格中画出图形,并直接写出点所对应的点的坐标.在网格中,画出绕原点顺时针旋转的.23.(10分)计算:|2﹣|+()﹣1+﹣2cos45°24.(10分)如图1,在矩形ABCD中,AE⊥BD于点E.(1)求证:BEBC=AECD.(2)如图2,若点P是边AD上一点,且PE⊥EC,求证:AEAB=DEAP.25.(12分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.26.如图,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN,当MN∥B′D′时,解答下列问题:(1)求证:△AB′M≌△AD′N;(2)求α的大小.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据a的符号分类,当a>0时,在A、B中判断一次函数的图象是否相符;当a<0时,在C、D中判断一次函数的图象是否相符.【详解】解:①当a>0时,二次函数y=ax2的开口向上,一次函数y=ax+a的图象经过第一、二、三象限,A错误,B正确;②当a<0时,二次函数y=ax2的开口向下,一次函数y=ax+a的图象经过第二、三、四象限,C错误,D错误.故选:B.【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解.2、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.

故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.3、D【解析】根据相似三角形的面积比等于相似比的平方解答.【详解】解:∵△ABC∽△DEF,相似比为2:3,∴对应面积的比为()2=,故选:D.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.4、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.5、D【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断.【详解】解:∵反比例函数的图象经过点(3,2),∴k=2×3=6,∴,∴图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误,∴点不在此函数的图象上,选项D正确;故选:D.【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型.6、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.7、B【解析】由图象与x轴有交点,可以推出b2-4ac>0,即b2>4ac,①正确;由对称轴为x=-b2a=-1可以判定②错误;由x=-1时,y>0,可知③错误.把x=1,x=﹣【详解】①∵图象与x轴有交点,对称轴为x=-b2a=﹣1,与y轴的交点在又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故本选项正确,②∵对称轴为x=-b2a=﹣∴2a=b,∴2a-b=0,故本选项错误,③由图象可知x=﹣1时,y>0,∴a﹣b+c>0,故本选项错误,④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理得5a+c=b,∵c>0,即5a<b,故本选项正确.故选:B.【点睛】本题考查了二次函数图像与各系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8、C【分析】先计算出根的判别式的值,根据的值就可以判断根的情况.【详解】=b2-4ac=1-4×1×1=-3∵-3<0∴原方程没有实数根故选:C.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.9、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.10、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合.故选D.11、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.12、D【分析】作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.【详解】如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=1.故选D.【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.二、填空题(每题4分,共24分)13、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.【点睛】本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.14、【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.15、1【解析】根据已知得出阴影部分即为平行四边形的面积.【详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=1.

故答案是:1.【点睛】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.16、1【解析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得,第1个图象中〇的个数为:,第2个图象中〇的个数为:,第3个图象中〇的个数为:,第4个图象中〇的个数为:,……∴第2019个图形中共有:个〇,故答案为:1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.17、【解析】先由得出,再根据平行线分线段成比例定理即可得到结论.【详解】∵,∴,∵a∥b∥c,∴=.故答案为:.【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.18、【详解】画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:.三、解答题(共78分)19、(1);(2).【解析】(1)求出,在Rt△ADC中,由三角函数得出;(2)由三角函数得出BC=AC•tan60°=,得出,证明△DFM≌△AGM(ASA),得出DF=AG,由平行线分线段成比例定理得出,即可得出答案.【详解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是对顶角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵点M是线段AD的中点,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【点睛】本题主要考查了全等三角形的性质与判定,特殊角的三角函数值,掌握全等三角形的性质与判定,特殊角的三角函数值是解题的关键.20、(1)见解析;(2)DC=6.4cm;(3)当△EFB为等腰三角形时,t的值为秒或秒或秒.【分析】(1)根据三角形相似的判定定理即可得到结论;(2)由△ACD∽△BAC,得,结合=8cm,即可求解;(3)若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,②当EF=EB时,③当FB=FE时,分别求出t的值,即可.【详解】(1)∵CD∥AB,∴∠BAC=∠DCA,又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)在Rt△ABC中,=8cm,由(1)知,△ACD∽△BAC,∴,即:,解得:DC=6.4cm;(3)△BEF能为等腰三角形,理由如下:由题意得:AF=2t,BE=t,若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,10﹣2t=t,解得:t=;②当EF=EB时,如图1,过点E作AB的垂线,垂足为G,则,此时△BEG∽△BAC,∴,即,解得:t=;③当FB=FE时,如图2,过点F作AB的垂线,垂足为H,则,此时△BFH∽△BAC,∴,即,解得:;综上所述:当△EFB为等腰三角形时,t的值为秒或秒或秒.【点睛】本题主要考查相似三角形的判定和性质的综合以及等腰三角形的性质与勾股定理,添加辅助线构造相似三角形,是解题的关键.21、.【分析】把方程中的x-2看作一个整体,利用因式分解法解此方程.【详解】解:(x-2)(x+2)=2,∴x-2=2或x+2=2,∴x2=2,x2=-2.22、(1)见解析,点的坐标为,点的坐标为;(2)见解析.【分析】(1)根据位似图形的性质:位似图形面积的比等于相似比的平方,即可得出相似比,画出图形;根据格点即可写出坐标;(2)根据图形的旋转的性质:图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变,画出图形即可.【详解】如图所示:点的坐标为,点的坐标为如图所示.【点睛】此题主要考查位似图形以及图形旋转的性质,熟练掌握,即可解题.23、1【分析】根据绝对值、负次数幂、二次根式、三角函数的性质计算即可.【详解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【点睛】本题考查绝对值、负次数幂、二次根式、三角函数的计算,关键在于牢记相关基础知识.24、(1)详见解析;(2)详见解析.【分析】(1)根据两角对应相等证,由对应边成比例得比例式,化等积式即可;(2)根据两角对应相等证,由对应边成比例得比例式后化等积式,再由AB=CD进行等量代换即可得结论.【详解】解:(1)∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵AE⊥BD∴∵∠AEB=∠C=90°(2)又【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.25、详见解析.【解析】由切线的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论